Skip to main content

Characterization of STAT Self-Association by Analytical Ultracentrifugation

  • Protocol
  • First Online:
JAK-STAT Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 967))

Abstract

Multiple experimental tools have demonstrated that cytokine-induced STAT activation entails the transition of dimer conformations rather than de novo dimerization. In this chapter, we describe the utilization of analytical ultracentrifugation (AUC) as a powerful technique for the quantitative analysis of hydro- and thermodynamic properties of STAT proteins in solution. These studies provided a quantitative understanding of dimer stability and conformational transitions associated with the activation of STAT1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93:827–839

    Article  PubMed  CAS  Google Scholar 

  2. Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394:145–151

    Article  PubMed  CAS  Google Scholar 

  3. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    Article  PubMed  CAS  Google Scholar 

  4. Stancato LF, David M, Carter-Su C, Larner AC, Pratt WB (1996) Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem 271:4134–4137

    Article  PubMed  CAS  Google Scholar 

  5. Novak U, Ji H, Kanagasundaram V, Simpson R, Paradiso L (1998) STAT3 forms stable homodimers in the presence of divalent cations prior to activation. Biochem Biophys Res Commun 247:558–563

    Article  PubMed  CAS  Google Scholar 

  6. Ndubuisi MI, Guo GG, Fried VA, Etlinger JD, Sehgal PB (1999) Cellular physiology of STAT3: where’s the cytoplasmic monomer? J Biol Chem 274:25499–25509

    Article  PubMed  CAS  Google Scholar 

  7. Haan S, Kortylewski M, Behrmann I, Muller-Esterl W, Heinrich PC, Schaper F (2000) Cytoplasmic STAT proteins associate prior to activation. Biochem J 345(Pt 3):417–421

    Article  PubMed  CAS  Google Scholar 

  8. Braunstein J, Brutsaert S, Olson R, Schindler C (2003) STATs dimerize in the absence of phosphorylation. J Biol Chem 278:34133–34140

    Article  PubMed  CAS  Google Scholar 

  9. Ota N, Brett TJ, Murphy TL, Fremont DH, Murphy KM (2004) N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat Immunol 5:208–215

    Article  PubMed  CAS  Google Scholar 

  10. Zhong M, Henriksen MA, Takeuchi K, Schaefer O, Liu B, ten Hoeve J, Ren Z, Mao X, Chen X, Shuai K, Darnell JE Jr (2005) Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci USA 102:3966–3971

    Article  PubMed  CAS  Google Scholar 

  11. Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE Jr (2006) Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 20:3372–3381

    Article  PubMed  CAS  Google Scholar 

  12. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE Jr, Chen X (2005) Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 17:761–771

    Article  PubMed  CAS  Google Scholar 

  13. Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S (2005) Structure of the unphosphorylated STAT5a dimer. J Biol Chem 280:40782–40787

    Article  PubMed  CAS  Google Scholar 

  14. Ren Z, Mao X, Mertens C, Krishnaraj R, Qin J, Mandal PK, Romanowski MJ, McMurray JS, Chen X (2008) Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1–5

    Article  PubMed  CAS  Google Scholar 

  15. Wenta N, Strauss H, Meyer S, Vinkemeier U (2008) Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci USA 105:9238–9243

    Article  PubMed  CAS  Google Scholar 

  16. Nardozzi J, Wenta N, Yasuhara N, Vinkemeier U, Cingolani G (2010) Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. J Mol Biol 402:83–100

    Article  PubMed  CAS  Google Scholar 

  17. Svedberg T, Nichols JB (1923) Determination of size and distribution of size of particle by centrifugal methods. J Am Chem Soc 45:2910–2917

    Article  Google Scholar 

  18. Svedberg T, Rinde H (1924) The ultra-centrifuge, a new instrument for the determination of size and distribution of size of particles in amicroscopic colloids. J Am Chem Soc 46:2677–2693

    Article  Google Scholar 

  19. Pickels EG (1950) Mach Des 22:102–107

    Google Scholar 

  20. Colfen H, Laue TM, Wohlleben W, Schilling K, Karabudak E, Langhorst BW, Brookes E, Dubbs B, Zollars D, Rocco M, Demeler B (2010) The open AUC project. Eur Biophys J 39:347–359

    Article  PubMed  Google Scholar 

  21. Einstein A (1905) Über die von der Molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:182–193

    Google Scholar 

  22. Stokes GG (1850) On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Phil Soc 9:8–106

    Google Scholar 

  23. Fick A (1855) Über diffusion. Ann Phys Chem 94:59–86

    Google Scholar 

  24. Lamm O (1929) Die Differenzialgleichung der Ultrazentrifugierung. Ark Mat Astron Fysik 21B:1–4

    Google Scholar 

  25. Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr (1996) DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 15:5616–5626

    PubMed  CAS  Google Scholar 

  26. Demeler B (2005) UltraScan—a comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ (eds) Modern analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry, UK, pp 210–229

    Google Scholar 

  27. UltraScan is freely available for download as source code (GPL) and binary packages for Windows, Linux and Macintosh platform.UltraScan-II: http://www.ultrascan2.uthscsa.edu/download.php; UltraScan-III: http://www.ultrascan3.uthscsa.edu/download.php. as source code (GPL) and binary packages for Windows, Linux and Macintosh platform

    Google Scholar 

  28. WinMATCH binary package for Windows can be freely downloaded at http://www.biotech.uconn.edu/auf/ftp/WINMATCH.ZIP (tested on October 4th, 2012).

  29. Demeler B, Brookes E, Wang R, Schirf V, Kim CA (2010) Characterization of reversible associations by sedimentation velocity with UltraScan. Macromol Biosci 10:775–782

    Article  PubMed  CAS  Google Scholar 

  30. Bhattacharyya SK, Maciejewska P, Borger L, Stadler M, Gulsun AM, Cicek HB, Colfen H (2006) Development of fast fiber based UV-Vis multiwavelength detector for an ultracentrifuge. Prog Colloid Polym Sci 131:9–22

    Article  CAS  Google Scholar 

  31. Strauss HM, Karabudak E, Bhattacharyya S, Kretzschmar A, Wohlleben W, Colfen H (2008) Performance of a fast fiber based UV/Vis multiwavelength detector for the analytical ultracentrifuge. Colloid Polym Sci 286:121–128

    Article  PubMed  CAS  Google Scholar 

  32. Cao W, Demeler B (2005) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation. Biophys J 89:1589–1602

    Article  PubMed  CAS  Google Scholar 

  33. Yphantis DA (1964) Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3:297–317

    Article  PubMed  CAS  Google Scholar 

  34. van Holde KE, Weischet WO (1978) Boundary analysis of sedimentation velocity experiments with monodisperse and paucidisperse solutes. Biopolymers 17:1387–1403

    Article  Google Scholar 

  35. Demeler B, van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288

    Article  PubMed  CAS  Google Scholar 

  36. Stafford WF 3rd (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295–301

    Article  PubMed  CAS  Google Scholar 

  37. Brookes E, Cao W, Demeler B (2009) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39:405–414

    Article  PubMed  Google Scholar 

  38. Brookes E, Demeler B (2006) Genetic algorithm optimization for obtaining accurate molecular weight distributions from sedimentation velocity experiments. Prog Colloid Polym Sci 131:33–40

    Article  CAS  Google Scholar 

  39. Demeler B, Brookes E (2007) Monte Carlo analysis of sedimentation experiments. Prog Colloid Polym Sci 286:129–137

    Google Scholar 

Download references

Acknowledgment

We thank Borries Demeler (University of Texas Health Science Center at San Antonio) for critical reading and comments. This work was supported by BBSRC grant BB/GO019290/1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wenta, N., Vinkemeier, U. (2013). Characterization of STAT Self-Association by Analytical Ultracentrifugation. In: Nicholson, S., Nicola, N. (eds) JAK-STAT Signalling. Methods in Molecular Biology, vol 967. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-242-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-242-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-241-4

  • Online ISBN: 978-1-62703-242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics