Skip to main content

Living Human Brain Slices: Network Analysis Using Voltage-Sensitive Dyes

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

The study of diseases of the nervous system relies heavily on the use of animal models which try to replicate the human condition via various methods. The underlying assumption is that the root causes of the impairment are similar in the animal model and the human patient, thus validating the findings in the animal model as relevant for the human condition. This assumption is difficult to verify, as experiments analogous to those being performed in the animal model obviously cannot be performed in humans. In severe cases of epilepsy and during treatment of brain tumors, surgical removal of diseased brain tissue is the last available option. The extracted tissue may be used to study the disease directly using in vitro methodology, circumventing the need for an animal model. During the surgical procedure, the epileptic “focus” is removed from the temporal lobe. The dissected tissue is usually composed of neocortex, hippocampus, and amygdala. This chapter describes the preparation of brain slices from the tissue excised during the surgery and the use of voltage-sensitive dyes to investigate network activity in the human brain slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  2. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  3. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  4. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  5. Luhmann HJ, Kilb W (2012) Intact in vitro preparation of the neonatal rodent cerebral cortex-analysis of cellular properties and network activity. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 301–314

    Google Scholar 

  6. De Curtis M, Lilbrizzi L, Uva L, Gnatkovsky V (2012) Neuronal networks in the in vitro isolated guinea pig brain. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 357–383

    Google Scholar 

  7. Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88

    PubMed  CAS  Google Scholar 

  8. Ebner TJ, Chen G (1985) Use of voltage-sensitive dyes and optical recordings in the central nervous system. Prog Neurobiol 46:463–506

    Article  Google Scholar 

  9. Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885

    Article  PubMed  CAS  Google Scholar 

  10. Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245–282

    Article  PubMed  CAS  Google Scholar 

  11. Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Annu Rev Neurosci 1:171–182

    Article  PubMed  CAS  Google Scholar 

  12. Wu JY, Cohen LB (1993) Fast multisite optical measurement of membrane potential. In: Mason WT (ed) Fluorescent and luminescent probes for biological activity. Academic, London, pp 389–404

    Google Scholar 

  13. Köhling R, Hohling JM, Straub H, Kuhlmann D, Kuhnt U, Tuxhorn I, Ebner A, Wolf P, Pannek HW, Gorji A, Speckmann EJ (2000) Optical monitoring of neuronal activity during spontaneous sharp waves in chronically epileptic human neocortical tissue. J Neurophysiol 84:2161–2165

    PubMed  Google Scholar 

  14. Straub H, Kuhnt U, Hohling JM, Köhling R, Gorji A, Kuhlmann D, Tuxhorn I, Ebner A, Wolf P, Pannek HW, Lahl R, Speckmann EJ (2003) Stimulus-induced patterns of bioelectric activity in human neocortical tissue recorded by a voltage sensitive dye. Neuro­science 121:587–604

    Article  PubMed  CAS  Google Scholar 

  15. Köhling R, Lucke A, Straub H, Speckmann EJ (1996) A portable chamber for long-distance transport of surviving human brain slice preparations. J Neurosci Methods 67:233–236

    PubMed  Google Scholar 

  16. Köhling R, Reinel J, Vahrenhold J, Hinrichs K, Speckmann EJ (2002) Spatio-temporal patterns of neuronal activity: analysis of optical imaging data using geometric shape matching. J Neurosci Methods 114:17–23

    Article  PubMed  Google Scholar 

  17. Yuste R, Konnerth A (2005) Imaging in neuroscience and development. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  18. Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40:1281–1291

    PubMed  CAS  Google Scholar 

  19. Cinelli AR, Salzberg BM (1990) Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea). J Neurophysiol 64:1767–1790

    PubMed  CAS  Google Scholar 

  20. Cinelli AR, Salzberg BM (1992) Dendritic origin of late events in optical recordings from salamander olfactory bulb. J Neurophysiol 68:786–806

    PubMed  CAS  Google Scholar 

  21. Broicher T, Bidmon HJ, Kamuf B, Coulon P, Gorji A, Pape HC, Speckmann EJ, Budde T (2010) Thalamic afferent activation of supragranular layers in auditory cortex in vitro: a voltage sensitive dye study. Neuroscience 165:371–385

    Article  PubMed  CAS  Google Scholar 

  22. Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J Neurosci 21:9403–9413

    PubMed  CAS  Google Scholar 

  23. Kubota M, Sugimoto S, Horikawa J, Nasu M, Taniguchi I (1997) Optical imaging of dynamic horizontal spread of excitation in rat auditory cortex slices. Neurosci Lett 237:77–80

    Article  PubMed  CAS  Google Scholar 

  24. Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20:1529–1537

    PubMed  CAS  Google Scholar 

  25. Llinas RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA 99:449–454

    Article  PubMed  CAS  Google Scholar 

  26. Sato H, Shimanuki Y, Saito M, Toyoda H, Nokubi T, Maeda Y, Yamamoto T, Kang Y (2008) Differential columnar processing in local circuits of barrel and insular cortices. J Neurosci 28:3076–3089

    Article  PubMed  CAS  Google Scholar 

  27. Yuste R, Tank DW, Kleinfeld D (1997) Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. Cereb Cortex 7:546–558

    Article  PubMed  CAS  Google Scholar 

  28. Köhling R, Lucke A, Straub H, Speckmann EJ, Tuxhorn I, Wolf P, Pannek H, Oppel F (1998) Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain 121:1073–1087

    Article  PubMed  Google Scholar 

  29. Köhling R, Qu M, Zilles K, Speckmann EJ (1999) Current-source-density profiles associated with sharp waves in human epileptic neocortical tissue. Neuroscience 94:1039–1050

    Article  PubMed  Google Scholar 

  30. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  PubMed  CAS  Google Scholar 

  31. Wittner L, Huberfeld G, Clemenceau S, Eross L, Dezamis E, Entz L, Ulbert I, Baulac M, Freund TF, Magloczky Z, Miles R (2009) The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. Brain 132:3032–3046

    Article  PubMed  Google Scholar 

  32. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873

    Article  PubMed  CAS  Google Scholar 

  33. Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pfluger’s Arch 453:385–396

    Article  CAS  Google Scholar 

  34. Konnerth A, Obaid AL, Salzberg BM (1987) Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro. J Physiol 393:681–702

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin-Josef Speckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Broicher, T., Speckmann, EJ. (2012). Living Human Brain Slices: Network Analysis Using Voltage-Sensitive Dyes. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics