Skip to main content

Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Abstract

Purkinje cells of the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN) were among the first central neurons to be studied extensively through the use of in vitro preparations. Yet, the degree to which the patterns of action potential (“spike”) output recorded in these cells in vitro match those recorded in vivo has been a matter of debate and uncertainty. We have identified relatively simple steps that can be applied to the preparation of cerebellar tissue slices or to recording conditions that increase the probability of recording spike output in vitro that more closely matches that found in the live animal. Of particular importance are considerations of the rapid development of Purkinje cell structure and spike output properties during the period used for patch-clamp recordings, reintroducing key synaptic inputs to the in vitro preparation and establishing appropriate reversal potentials for ion species. We also report that storing water to be used for preparing medium in polyethylene carboys introduces a contaminant that decreases the amplitude of T-type Ca2+ currents and the ability to generate rebound burst discharge in DCN cells. Controlling for these factors restores spontaneous tonic firing, increases the gain to parallel fiber input, uncovers bistable rhythmic behavior in Purkinje cells, and increases the probability for generating rebound discharge in DCN cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663–1674

    PubMed  CAS  Google Scholar 

  2. Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J Neurophysiol 33:527–536

    PubMed  CAS  Google Scholar 

  3. Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 33: 537–547

    PubMed  CAS  Google Scholar 

  4. Mouginot D, Gähwiler BH (1995) Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience 64:699–712

    PubMed  CAS  Google Scholar 

  5. Llinas R, Mühlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    PubMed  CAS  Google Scholar 

  6. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflüger’s Arch 414:600–612

    CAS  Google Scholar 

  7. Schultz SR, Kitamura K, Post-Uiterweer A, Krupic J, Häusser M (2009) Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J Neurosci 29:8005–8015

    PubMed  CAS  Google Scholar 

  8. Sugimori M, Llinas RR (1990) Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. Proc Natl Acad Sci USA 87:5084–5088

    PubMed  CAS  Google Scholar 

  9. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    PubMed  CAS  Google Scholar 

  10. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    PubMed  CAS  Google Scholar 

  11. Stuart G, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703–712

    PubMed  CAS  Google Scholar 

  12. Raman IM, Gustafson AE, Padgett D (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 20:9004–9016

    PubMed  CAS  Google Scholar 

  13. Llinas R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315:569–584

    PubMed  CAS  Google Scholar 

  14. Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32:1044–1055

    PubMed  CAS  Google Scholar 

  15. Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    PubMed  Google Scholar 

  16. McKay BE, Turner RW (2004) Kv3 K+ channels repolarize calcium spikes to shape burst output in rat Purkinje cells. Eur J Neurosci 20:729–739

    PubMed  CAS  Google Scholar 

  17. Womack M, Khodakhah K (2002) Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. J Neurosci 22: 10603–10612

    PubMed  CAS  Google Scholar 

  18. Cerminara NL, Rawson JA (2004) Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci 24:4510–4517

    PubMed  CAS  Google Scholar 

  19. Lowenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Hausser M (2006) Purkinje cells in awake behaving animals operate in stable upstate membrane potential. Nat Neurosci 9:461–463

    Google Scholar 

  20. Bengtsson F, Jorntell H (2007) Ketamine and xylazine depress sensory-evoked parallel fiber and climbing fiber responses. J Neurophysiol 98:1697–1705

    PubMed  CAS  Google Scholar 

  21. Schonewille M, Khosrovani S, Winkelman BH, Hoebeek FE, De Jeu MT, Larsen IM, Van der Burg J, Schmolesky MT, Frens MA, De Zeeuw CI (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461, author reply 461

    PubMed  CAS  Google Scholar 

  22. Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K (2008) Questioning the role of rebound firing in the cerebellum. Nat Neurosci 11:1256–1258

    PubMed  CAS  Google Scholar 

  23. Tadayonnejad R, Mehaffey WH, Anderson D, Turner RW (2009) Reliability of triggering postinhibitory rebound bursts in deep cerebellar neurons. Channels 3:1–7

    Google Scholar 

  24. Zheng N, Raman IM (2009) Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci 29:9826–9838

    PubMed  CAS  Google Scholar 

  25. Zheng N, Raman IM (2009) Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum 9:56–66

    Google Scholar 

  26. Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci USA 103:5555–5560

    PubMed  CAS  Google Scholar 

  27. Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW (2008) Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol 100:2684–2701

    PubMed  Google Scholar 

  28. Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  29. Garwicz M, Ekerot CF, Jorntell H (1998) Organizational principles of cerebellar neuronal circuitry. News Physiol Sci 13:26–32

    PubMed  Google Scholar 

  30. Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, Berlin

    Google Scholar 

  31. De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333

    PubMed  Google Scholar 

  32. Kitai ST, McCrea RA, Preston RJ, Bishop GA (1977) Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. I. Climbing fiber system. Brain Res 122:197–214

    PubMed  CAS  Google Scholar 

  33. McCrea RA, Bishop GA, Kitai ST (1978) Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol 181:397–419

    PubMed  CAS  Google Scholar 

  34. Rowland NC, Jaeger D (2008) Responses to tactile stimulation in deep cerebellar nucleus neurons result from recurrent activation in multiple pathways. J Neurophysiol 99:704–717

    PubMed  Google Scholar 

  35. De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162:816–826

    PubMed  Google Scholar 

  36. Davie JT, Clark BA, Hausser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28:7599–7609

    PubMed  CAS  Google Scholar 

  37. Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Hausser M (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–211

    PubMed  CAS  Google Scholar 

  38. Khaliq ZM, Raman IM (2005) Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. J Neurosci 25:454–463

    PubMed  CAS  Google Scholar 

  39. McKay BE, Molineux ML, Mehaffey WH, Turner RW (2005) Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons. J Neurosci 25:1481–1492

    PubMed  CAS  Google Scholar 

  40. McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS, Turner RW (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output. J Neurophysiol 97:2590–2604

    PubMed  CAS  Google Scholar 

  41. McKay BE, Turner RW (2005) Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol 567:829–850

    PubMed  CAS  Google Scholar 

  42. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  43. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  44. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  45. Konnerth A, Llano I, Armstrong CM (1990) Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA 87:2662–2665

    PubMed  CAS  Google Scholar 

  46. Christini DJ, Stein KM, Markowitz SM, Lerman BB (1999) Practical real-time computing system for biomedical experiment interface. Ann Biomed Eng 27:180–186

    PubMed  CAS  Google Scholar 

  47. Dorval AD, Christini DJ, White JA (2001) Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Ann Biomed Eng 29:897–907

    PubMed  CAS  Google Scholar 

  48. Butera RJ Jr, Wilson CG, Delnegro CA, Smith JC (2001) A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. IEEE Trans Biomed Eng 48: 1460–1470

    PubMed  Google Scholar 

  49. Raikov I, Preyer A, Butera RJ (2004) MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments. J Neurosci Methods 132:109–123

    PubMed  Google Scholar 

  50. Bettencourt JC, Lillis KP, Stupin LR, White JA (2008) Effects of imperfect dynamic clamp: computational and experimental results. J Neurosci Methods 169:282–289

    PubMed  Google Scholar 

  51. Milescu LS, Yamanishi T, Ptak K, Mogri MZ, Smith JC (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87

    PubMed  CAS  Google Scholar 

  52. Kullmann PH, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554

    PubMed  Google Scholar 

  53. Mouginot D, Bossu JL, Gahwiler BH (1997) Low-threshold Ca2+ currents in dendritic recordings from Purkinje cells in rat cerebellar slice cultures. J Neurosci 17:160–170

    PubMed  CAS  Google Scholar 

  54. Jahnsen H (1986) Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol 372:129–147

    PubMed  CAS  Google Scholar 

  55. Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82:1697–1709

    PubMed  CAS  Google Scholar 

  56. Muri R, Knöpfel T (1994) Activity induced elevations of intracellular calcium concentration in neurons of the deep cerebellar nuclei. J Neurophysiol 71:420–428

    PubMed  CAS  Google Scholar 

  57. Hurlock EC, Bose M, Pierce G, Joho RH (2009) Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1. J Neurosci 29:15735–15744

    PubMed  CAS  Google Scholar 

  58. Uusisaari M, Obata K, Knöpfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97:901–911

    PubMed  CAS  Google Scholar 

  59. Jorntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797–806

    PubMed  CAS  Google Scholar 

  60. Chen FP, Evinger C (2006) Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J Neurosci 26:10569–10576

    PubMed  CAS  Google Scholar 

  61. Shin SL, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar purkinje cell simple spike trains. PLoS One 2:e485

    PubMed  Google Scholar 

  62. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    PubMed  CAS  Google Scholar 

  63. McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594

    PubMed  Google Scholar 

  64. Hildebrand ME, Isope P, Miyazaki T, Nakaya T, Garcia E, Feltz A, Schneider T, Hescheler J, Kano M, Sakimura K, Watanabe M, Dieudonne S, Snutch TP (2009) Functional coupling between mGluR1 and Cav3.1 T-type calcium channels contributes to parallel fiber-induced fast calcium signaling within Purkinje cell dendritic spines. J Neurosci 29:9668–9682

    PubMed  CAS  Google Scholar 

  65. Swensen AM, Bean BP (2003) Ionic mechanisms of burst firing in dissociated Purkinje neurons. J Neurosci 23:9650–9663

    PubMed  CAS  Google Scholar 

  66. Cavelier P, Bossu JL (2003) Dendritic ­low-threshold Ca2+ channels in rat cerebellar Purkinje cells: possible physiological implications. Cerebellum 2:196–205

    PubMed  CAS  Google Scholar 

  67. Iftinca M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi GW (2006) Temperature dependence of T-type calcium channel gating. Neuroscience 142:1031–1042

    PubMed  CAS  Google Scholar 

  68. Klockner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E, Schneider T (1999) Comparison of the Ca2+ currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11:4171–4178

    PubMed  CAS  Google Scholar 

  69. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  70. Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587–604

    PubMed  CAS  Google Scholar 

  71. Nobile M, Carbone E, Lux HD, Zucker H (1990) Temperature sensitivity of Ca currents in chick sensory neurones. Pflüger’s Arch 415:658–663

    CAS  Google Scholar 

  72. Alvina K, Khodakhah K (2008) Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats. J Physiol 586:2523–2538

    PubMed  CAS  Google Scholar 

  73. Feng SS, Jaeger D (2008) The role of SK calcium-dependent potassium currents in regulating the activity of deep cerebellar nucleus neurons: a dynamic clamp study. Cerebellum 7:542–546

    PubMed  CAS  Google Scholar 

  74. Czubayko U, Sultan F, Thier P, Schwarz C (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J Neurophysiol 85:2017–2029

    PubMed  CAS  Google Scholar 

  75. Takashi Y, Toyoko H, Mayuko O, Akira A, Yoshihiko F (2003) Non-genomic modulation of dopamine release by bisphenol-A in PC12 cells. J Neurochem 87:1499–1508

    Google Scholar 

  76. Wozniak AL, Bulayeva NN, Watson CS (2005) Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect 113:431–439

    PubMed  CAS  Google Scholar 

  77. Quesada I, Fuentes E, Viso-Leon MC, Soria B, Ripoll C, Nadal A (2002) Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. FASEB J 16:1671–1673

    PubMed  CAS  Google Scholar 

  78. Ito Y, Sato S, Son M, Kondo M, Kume H, Takagi K, Yamaki K (2002) Bisphenol A inhibits Cl secretion by inhibition of basolateral K+ conductance in human airway epithelial cells. J Pharmacol Exp Ther 302:80–87

    PubMed  CAS  Google Scholar 

  79. Gauck V, Thomann M, Jaeger D, Borst A (2001) Spatial distribution of low- and high-voltage-activated calcium currents in neurons of the deep cerebellar nuclei. J Neurosci 21:RC158

    PubMed  CAS  Google Scholar 

  80. Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol 289:425–448

    PubMed  CAS  Google Scholar 

  81. Morales E, Fernandez FR, Sinclair S, Molineux ML, Mehaffey WH, Turner RW (2004) Releasing the peri-neuronal net to patch-clamp neurons in adult CNS. Pflüger’s Arch 448:248–258

    CAS  Google Scholar 

  82. Altman J, Bayer SA (1997) Development of the cerebellar system. CRC Press, New York

    Google Scholar 

  83. Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    PubMed  CAS  Google Scholar 

  84. Gardette R, Debono M, Dupont JL, Crepel F (1985) Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. II. Membrane conductances. Brain Res 352:97–106

    PubMed  CAS  Google Scholar 

  85. Gardette R, Debono M, Dupont JL, Crepel F (1985) Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials. Brain Res 351:47–55

    PubMed  CAS  Google Scholar 

  86. Molineux ML, Fernandez FR, Mehaffey WH, Turner RW (2005) A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells. J Neurosci 25:10863–10873

    PubMed  CAS  Google Scholar 

  87. Crepel F (1971) Maturation of climbing fiber responses in the rat. Brain Res 35:272–276

    PubMed  CAS  Google Scholar 

  88. Scelfo B, Strata P (2005) Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum. Eur J Neurosci 21:971–978

    PubMed  Google Scholar 

  89. Fernandez FR, Engbers JDT, Turner RW (2007) Firing dynamics of cerebellar Purkinje cells. J Neurophysiol 98:278–294

    PubMed  Google Scholar 

  90. Williams SR, Christensen SR, Stuart GJ, Häusser M (2002) Membrane potential bistability is controlled by the hyperpolarization-activated current IH in rat cerebellar Purkinje neurons in vitro. J Physiol 539:469–483

    PubMed  CAS  Google Scholar 

  91. Ebner TJ, Bloedel JR (1981) Role of ­climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J Neurophysiol 45:962–971

    PubMed  CAS  Google Scholar 

  92. Ebner TJ, Yu QX, Bloedel JR (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber input. J Neurophysiol 50:205–219

    PubMed  CAS  Google Scholar 

  93. Latham A, Paul DH (1971) Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres. J Physiol 213:135–156

    PubMed  CAS  Google Scholar 

  94. Christian KM, Thompson RF (2003) Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 10:427–455

    PubMed  Google Scholar 

  95. Stanton ME, Fox GD, Carter CS (1998) Ontogeny of the conditioned eyeblink response in rats: acquisition or expression? Neuropharmacology 37:623–632

    PubMed  CAS  Google Scholar 

  96. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350

    PubMed  CAS  Google Scholar 

  97. Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751

    PubMed  CAS  Google Scholar 

  98. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726

    PubMed  Google Scholar 

  99. Fernandez FR, White JA (2008) Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex. J Neurosci 28:3790–3803

    PubMed  CAS  Google Scholar 

  100. Fernandez FR, White JA (2009) Reduction of spike afterdepolarization by increased leak conductance alters interspike interval variability. J Neurosci 29:973–986

    PubMed  CAS  Google Scholar 

  101. Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767

    PubMed  CAS  Google Scholar 

  102. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995

    PubMed  CAS  Google Scholar 

  103. Jaeger D, Bower JM (1999) Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. J Neurosci 19:6090–6101

    PubMed  CAS  Google Scholar 

  104. Gauck V, Jaeger D (2003) The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. J Neurosci 23:8109–8118

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge M. Kruskic and L. Chen for expert technical assistance, G. W. Zamponi for collaborative contributions to the work reviewed here, and D. Jaeger for sharing data for representation. Supported by grants from the Canadian Institute of Health Research (CIHR) to RWT and GWZ and studentship or postdoctoral support through the Alberta Heritage Foundation for Medical Research (AHFMR) (FRF, RT, BEM, JDTE, MI), CIHR (BEM, JDTE), NSERC (BEM), an Achievers in Medical Sciences award (DMA), T. Chen Fong awards (DMA, JDTE), and an Izaak Walton Killam award (DMA). RWT is an AHFMR Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray W. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

McKay, B.E. et al. (2012). Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics