Skip to main content

Osmoregulatory Circuits in Slices and En Bloc Preparations of Rodent Hypothalamus

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

Osmoregulatory neural networks in the mammalian hypothalamus are responsible for keeping plasma osmolality near a constant set point. This process involves primary osmosensory neurons located in the organum vasculosum lamina terminalis (OVLT) and effector neurons located elsewhere in the hypothalamus and in other parts of the brain. Hypothalamic effector neurons include vasopressin (VP)- and oxytocin (OT)-releasing magnocellular neurosecretory cells (MNCs) in the supraoptic (SON) and paraventricular nuclei. Osmotically induced changes in action potential discharge by MNCs cause proportional changes in VP and OT release into the blood to modulate water and sodium excretion at the kidney. This osmotic regulation of firing rate in MNCs plays a critical role in the maintenance of body fluid balance. In this chapter, we describe spontaneously active in vitro preparations of rodent hypothalamus that have been developed for the specific purpose of studying how osmosensory neurons in the OVLT and other hypothalamic structures regulate MNCs in the SON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgane PJ, Panksepp J (1979) Handbook of the hypothalamus, vol 1, Anatomy of the hypothalamus. Marcel Dekker, New York, p 726

    Google Scholar 

  2. Okamura H (2007) Suprachiasmatic nucleus clock time in the mammalian circadian system. Cold Spring Harb Symp Quant Biol 72:551–556

    Article  PubMed  CAS  Google Scholar 

  3. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  4. Denton DA, McKinley MJ, Weisinger RS (1996) Hypothalamic integration of bodyfluid regulation. Proc Natl Acad Sci USA 93:7397–7404

    Article  PubMed  CAS  Google Scholar 

  5. Dietrich MO, Horvath TL (2009) Feeding signals and brain circuitry. Eur J Neurosci 30:1688–1696

    Article  PubMed  Google Scholar 

  6. Stocker SD, Keith KJ, Toney GM (2004) Acute inhibition of the hypothalamic paraventricular nucleus decreases renal sympathetic nerve activity and arterial blood pressure in water-deprived rats. Am J Physiol Regul Integr Comp Physiol 286:R719–R725

    Article  PubMed  CAS  Google Scholar 

  7. Toney GM, Chen QH, Cato MJ, Stocker SD (2003) Central osmotic regulation of sympathetic nerve activity. Acta Physiol Scand 177:43–55

    Article  PubMed  CAS  Google Scholar 

  8. Boulant JA (2000) Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 31:S157–S161

    Article  PubMed  Google Scholar 

  9. Boulant JA (1981) Hypothalamic mechanisms in thermoregulation. Fed Proc 40:2843–2850

    PubMed  CAS  Google Scholar 

  10. Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9:519–531

    Article  PubMed  CAS  Google Scholar 

  11. Edwards OM, Clark JD (1986) Post-traumatic hypopituitarism. Six cases and a review of the literature. Medicine (Baltimore) 65:281–290

    CAS  Google Scholar 

  12. Pittman QJ, Blume HW, Renaud LP (1981) Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electrophysiological study in the rat. Brain Res 215:15–28

    Article  PubMed  CAS  Google Scholar 

  13. Sherlock DA, Field PM, Raisman G (1975) Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat. Brain Res 88:403–414

    Article  PubMed  CAS  Google Scholar 

  14. Alonso G, Assenmacher I (1981) Radioautographic studies on the neurohypophysial projections of the supraoptic and paraventricular nuclei in the rat. Cell Tissue Res 219:525–534

    Article  PubMed  CAS  Google Scholar 

  15. Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7:773–808

    Article  PubMed  CAS  Google Scholar 

  16. Cunningham ET Jr, Sawchenko PE (1991) Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci 14:406–411

    Article  PubMed  CAS  Google Scholar 

  17. Sharif-Naeini R, Ciura S, Stachniak TJ, Trudel E, Bourque CW (2008) Neurophysiology of supraoptic neurons in C57/BL mice studied in three acute in vitro preparations. Prog Brain Res 170:229–242

    Article  PubMed  Google Scholar 

  18. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  19. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K (2012) Spontaneous neural network oscillations in hippocampus, cortex and locus coeruleus of newborn rat and piglet brain slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  20. Nakamura TJ, Michel S, Block GD, Colwell CS (2012) Neural circuits underlying circadian oscillations in mammals: clocks in a dish. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 183–210

    Google Scholar 

  21. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  22. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  23. Fish KN, Gonzales-Burgos G, Zaitsev AV, Lewis DA (2012) Histological characterization of physiologically determined fast spiking interneurons in slices of the primate dorsolateral prefrontal cortex. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 159–181

    Google Scholar 

  24. McKay BE, Tadayonnejad R, Anderson DM, Engbers JDT, Fernandez FR, Iftinca M, Turner RW (2012) Establishing in vivo like activity in rat cerebellar cells maintained in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 233–262

    Google Scholar 

  25. Sharif-Naeini R, Ciura S, Bourque CW (2008) TRPV1 gene required for thermosensory transduction and anticipatory secretion from vasopressin neurons during hyperthermia. Neuron 58:179–185

    Article  PubMed  CAS  Google Scholar 

  26. Broicher T, Speckmann EJ (2012) Living human brain slices: network analysis using voltage sensitive dyes. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 285–300

    Google Scholar 

  27. Luhmann HJ, Kilb W (2012) Intact in vitro preparation of the neonatal rodent cerebral cortex-analysis of cellular properties and network activity. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 301–314

    Google Scholar 

  28. Stern JE (2001) Electrophysiological and morphological properties of pre-autonomic neurones in the rat hypothalamic paraventricular nucleus. J Physiol 537:161–177

    Article  PubMed  CAS  Google Scholar 

  29. Hoffman NW, Tasker JG, Dudek FE (1991) Immunohistochemical differentiation of electrophysiologically defined neuronal populations in the region of the rat hypothalamic paraventricular nucleus. J Comp Neurol 307:405–416

    Article  PubMed  CAS  Google Scholar 

  30. Spergel DJ, Krüth U, Shimshek DR, Sprengel R, Seeburg PH (2001) Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog Neurobiol 63:673–686

    Article  PubMed  CAS  Google Scholar 

  31. Ueta Y, Fujihara H, Serino R, Dayanithi G, Ozawa H, Matsuda K, Kawata M, Yamada J, Ueno S, Fukuda A, Murphy D (2005) Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology 146:406–413

    Article  PubMed  CAS  Google Scholar 

  32. van den Pol AN, Yao Y, Fu LY, Foo K, Huang H, Coppari R, Lowell BB, Broberger C (2009) Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J Neurosci 29:4622–4639

    Article  PubMed  Google Scholar 

  33. Vandesande F, Dierickx K (1975) Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res 164:153–162

    Article  PubMed  CAS  Google Scholar 

  34. Swaab DF, Nijveldt F, Pool CW (1975) Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol 67:461–462

    Article  PubMed  CAS  Google Scholar 

  35. Huang W, Lee SL, Sjoquist M (1995) Natriuretic role of endogenous oxytocin in male rats infused with hypertonic NaCl. Am J Physiol 268:R634–R640

    PubMed  CAS  Google Scholar 

  36. Verbalis JG, Mangione MP, Stricker EM (1991) Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128:1317–1322

    Article  PubMed  CAS  Google Scholar 

  37. Bicknell RJ (1988) Optimizing release from peptide hormone secretory nerve terminals. J Exp Biol 139:51–65

    PubMed  CAS  Google Scholar 

  38. Dreifuss JJ et al (1971) Action potentials and release of neurohypophysial hormones in vitro. J Physiol 215(3):805–817

    PubMed  CAS  Google Scholar 

  39. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  PubMed  CAS  Google Scholar 

  40. Haller EW, Brimble MJ, Wakerley JB (1978) Phasic discharge in supraoptic neurones recorded from hypothalamic slices. Exp Brain Res 33:131–134

    Article  PubMed  CAS  Google Scholar 

  41. Hatton GI, Armstrong WE, Gregory WA (1978) Spontaneous and osmotically stimulated activity in slices of rat hypothalamus. Brain Res Bull 3:497–508

    Article  PubMed  CAS  Google Scholar 

  42. Yamamoto C, McIlwain H (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem 13:1333–1343

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto C, McIlwain H (1966) Potentials evoked in vitro in preparations from the mammalian brain. Nature 210:1055–1056

    Article  PubMed  CAS  Google Scholar 

  44. Trudel E, Bourque CW (2003) A rat brain slice preserving synaptic connections between neurons of the suprachiasmatic nucleus, organum vasculosum lamina terminalis and supraoptic nucleus. J Neurosci Methods 128:67–77

    Article  PubMed  Google Scholar 

  45. Hatton GI, Yang QZ (2002) Synaptic potentials mediated by alpha 7 nicotinic acetylcholine receptors in supraoptic nucleus. J Neurosci 22:29–37

    PubMed  CAS  Google Scholar 

  46. Hatton GI, Yang QZ (1989) Supraoptic nucleus afferents from the main olfactory bulb–II. Intracellularly recorded responses to lateral olfactory tract stimulation in rat brain slices. Neuroscience 31:289–297

    Article  PubMed  CAS  Google Scholar 

  47. Yang QZ, Smithson KG, Hatton GI (1995) NMDA and non-NMDA receptors on rat supraoptic nucleus neurons activated monosynaptically by olfactory afferents. Brain Res 680:207–216

    Article  PubMed  CAS  Google Scholar 

  48. Weiss ML, Yang QZ, Hatton GI (1989) Magnocellular tuberomammillary nucleus input to the supraoptic nucleus in the rat: anatomical and in vitro electrophysiological investigations. Neuroscience 31:299–311

    Article  PubMed  CAS  Google Scholar 

  49. Yang QZ, Hatton GI (1994) Histamine mediates fast synaptic inhibition of rat supraoptic oxytocin neurons via chloride conductance activation. Neuroscience 61:955–964

    Article  PubMed  CAS  Google Scholar 

  50. Yang QZ, Hatton GI (1997) Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites. Brain Res 773:162–172

    Article  PubMed  CAS  Google Scholar 

  51. Boudaba C, Schrader LA, Tasker JG (1997) Physiological evidence for local excitatory ­synaptic circuits in the rat hypothalamus. J Neurophysiol 77:3396–3400

    PubMed  CAS  Google Scholar 

  52. Dunn FL, Brennan TJ, Nelson AE, Robertson GL (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52:3212–3219

    Article  PubMed  CAS  Google Scholar 

  53. Forsling ML, Ingram DL, Stanier MW (1976) Effects of various ambient temperatures and of heating and cooling the hypothalamus and cervical spinal cord on antidiuretic hormone secretion and urinary osmolality in pigs. J Physiol 257:673–686

    PubMed  CAS  Google Scholar 

  54. Forsling ML (2000) Diurnal rhythms in neurohypophysial function. Exp Physiol 85:179S–186S

    Article  PubMed  CAS  Google Scholar 

  55. Stachniak TJ, Bourque CW (2006) Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions. Am J Physiol Regul Integr Comp Physiol 291:R68–R76

    Article  PubMed  CAS  Google Scholar 

  56. MacMillan SJ, Bourque CW (1993) Intracellular recordings from neurons of the arcuate nucleus in superfused explants of rat hypothalamus. Neuroendocrinology 57:159–166

    Article  PubMed  CAS  Google Scholar 

  57. Bourque CW, Renaud LP (1983) A perfused in vitro preparation of hypothalamus for electrophysiological studies on neurosecretory neurons. J Neurosci Methods 7:203–214

    Article  PubMed  CAS  Google Scholar 

  58. Bourque CW, Renaud LP (1983) In vitro neurophysiology of identified rat hypothalamic ‘neuroendocrine’ neurons. Neuroendocrinology 36:161–164

    Article  PubMed  CAS  Google Scholar 

  59. Trudel E, Bourque CW (2010) Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat Neurosci 13:467–474

    Article  PubMed  CAS  Google Scholar 

  60. Nakashima T, Hori T, Kiyohara T, Shibata M (1985) Osmosensitivity of preoptic thermosensitive neurons in hypothalamic slices in vitro. Pflüger’s Arch 405:112–117

    Article  CAS  Google Scholar 

  61. Aradachi H, Honda K, Negoro H, Kubota T (1996) Median preoptic neurones projecting to the supraoptic nucleus are sensitive to haemodynamic changes as well as to rise in plasma osmolality in rats. J Neuroendocrinol 8:35–43

    Article  PubMed  CAS  Google Scholar 

  62. Stocker SD, Toney GM (2005) Median preoptic neurones projecting to the hypothalamic paraventricular nucleus respond to osmotic, circulating Ang II and baroreceptor input in the rat. J Physiol 568:599–615

    Article  PubMed  CAS  Google Scholar 

  63. Richard D, Bourque CW (1995) Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. J Physiol 489:567–577

    PubMed  CAS  Google Scholar 

  64. Bischofberger J, Engel D, Li L, Geiger JR, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1:2075–2081

    Article  PubMed  CAS  Google Scholar 

  65. Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198:45–64

    Article  PubMed  CAS  Google Scholar 

  66. Kolaj M, Yang CR, Renaud LP (2000) Presynaptic GABAB receptors modulate organum vasculosum lamina terminalis-evoked postsynaptic currents in rat hypothalamic supraoptic neurons. Neuroscience 98:129–133

    Article  PubMed  CAS  Google Scholar 

  67. Zhang Z, Kindrat AN, Sharif-Naeini R, Bourque CW (2007) Actin filaments mediate mechanical gating during osmosensory transduction in rat supraoptic nucleus neurons. J Neurosci 27:4008–4013

    Article  PubMed  CAS  Google Scholar 

  68. Heidelberger R, Zhou ZY, Matthews G (2002) Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J Neurophysiol 88:2509–2517

    Article  PubMed  Google Scholar 

  69. Bourque CW, Renaud LP (1991) Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Res 540:349–352

    Article  PubMed  CAS  Google Scholar 

  70. Pittman QJ, Hatton JD, Bloom FE (1981) Spontaneous activity in perfused hypothalamic slices: dependence on calcium content of perfusate. Exp Brain Res 42:49–52

    Article  PubMed  CAS  Google Scholar 

  71. Zhang Z, Bourque CW (2006) Calcium permeability and flux through osmosensory transduction channels of isolated rat supraoptic nucleus neurons. Eur J Neurosci 23: 1491–1500

    Article  PubMed  Google Scholar 

  72. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

Download references

Acknowledgments

Work in our lab is supported by operating grants MOP-9939 and MOP-82818 from the Canadian Institutes of Health Research and by a James McGill Professor Chair to CWB. JRS and SC were recipients of Canada Graduate Scholarships. TJS was recipient of a CIHR doctoral Award and ET received a Doctoral Award from the Heart and Stroke Foundation of Canada. The Research Institute of the McGill University Health Centre is supported by the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bourque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stachniak, T.J., Sudbury, J.R., Trudel, E., Choe, K.Y., Ciura, S., Bourque, C.W. (2012). Osmoregulatory Circuits in Slices and En Bloc Preparations of Rodent Hypothalamus. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics