Skip to main content

Neural Circuits Underlying Circadian Oscillations in Mammals: Clocks in a Dish

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a bilaterally paired structure in the hypothalamus known as the suprachiasmatic nucleus (SCN). Understanding this mammalian circadian system will require a detailed multilevel analysis of neural SCN circuits. Many of the techniques and approaches that are used for the analysis of the circuitry driving circadian oscillations in the SCN are similar to those employed in other brain regions. There is, however, one fundamental difference that needs to be taken into consideration, that is, the physiological, cellular, and molecular properties of SCN neurons vary with the time of day. These cells continue to oscillate in the dish, so the daily circadian cycle always needs to be a consideration regardless of the experimental preparation. In this chapter, we will consider the preparations and techniques that we have used to analyze the SCN circuit including acute brain slice, slice culture, and disassociated neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hastings MH, Herzog ED (2004) Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 19:400–413

    Article  PubMed  CAS  Google Scholar 

  2. Maywood ES, O’Neill JS, Reddy AB, Chesham JE, Prosser HM, Kyriacou CP, Godinho SI, Nolan PM, Hastings MH (2007) Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. Cold Spring Harb Symp Quant Biol 72:85–94

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775

    Article  PubMed  CAS  Google Scholar 

  4. Morin LP, Shivers KY, Blanchard JH, Muscat L (2006) Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137:1285–1297

    Article  PubMed  CAS  Google Scholar 

  5. Yan L, Okamura H (2002) Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci 15:1153–1162

    Article  PubMed  Google Scholar 

  6. Hamada T, Antle MC, Silver R (2004) Temporal and spatial expression patterns of canonical clock genes and clock–controlled genes in the suprachiasmatic nucleus. Eur J Neurosci 19:1741–1748

    Article  PubMed  Google Scholar 

  7. Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  8. Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Article  PubMed  CAS  Google Scholar 

  9. Kalsbeek A, Palm IF, La Fleur SE, Scheer FAJL, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–469

    Article  PubMed  CAS  Google Scholar 

  10. Schaap J, Pennartz CM, Meijer JH (2003) Electrophysiology of the circadian pacemaker in mammals. Chronobiol Int 20:171–188

    Article  PubMed  Google Scholar 

  11. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  PubMed  CAS  Google Scholar 

  12. Herzog ED, Geusz ME, Khalsa SB, Straume M, Block GD (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 757:285–290

    Article  PubMed  CAS  Google Scholar 

  13. Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma K (1998) Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250:157–160

    Article  PubMed  CAS  Google Scholar 

  14. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  PubMed  CAS  Google Scholar 

  15. Itri J, Colwell CS (2003) Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J Neurophysiol 90:1589–1597

    Article  PubMed  CAS  Google Scholar 

  16. Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, Kim DY, Sohn EJ, Han HC, Hong SK, Colwell CS, Kim YI (2008) Excitatory actions of GABA in the suprachiasmatic nucleus. J Neurosci 28:5450–5459

    Article  PubMed  CAS  Google Scholar 

  17. Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21:470–481

    Article  PubMed  CAS  Google Scholar 

  18. Colwell CS (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12:571–576

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, Miyawaki A, Allen CN (2003) Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38:253–263

    Article  PubMed  CAS  Google Scholar 

  20. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    Article  PubMed  Google Scholar 

  21. Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci USA 102:4180–4184

    Article  PubMed  CAS  Google Scholar 

  22. Wang LM, Dragich JM, Kudo T, Odom IH, Welsh DK, O’Dell TJ, Colwell CS (2009) Expression of the circadian clock gene Period2 in the hippocampus: possible implications for synaptic plasticity and learned behaviour. ASN Neuro 1(3)

    Google Scholar 

  23. Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Res 79:176–181

    Article  Google Scholar 

  24. vanderLeest HT, Vansteensel MJ, Duindam H, Michel S, Meijer JH (2009) Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time. Chronobiol Int 26:1075–1089

    PubMed  Google Scholar 

  25. Colwell CS (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13:1420–1428

    Article  PubMed  CAS  Google Scholar 

  26. Itri JN, Michel S, Vansteensel MJ, Meijer JH, Colwell CS (2005) Fast delayed rectifier potassium current required for circadian neural activity. Nat Neurosci 8:650–656

    Article  PubMed  CAS  Google Scholar 

  27. Itri JN, Vosko AM, Schroeder A, Dragich JM, Michel S, Colwell CS (2010) Circadian regulation of A-type potassium currents in the suprachiasmatic nucleus. J Neurophysiol 103: 632–640

    Article  PubMed  CAS  Google Scholar 

  28. Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS (2006) Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7:15

    Article  PubMed  Google Scholar 

  29. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  30. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Properties of acutely isolated fetal (Human) brain tissues. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  31. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  32. MacVicar BA (1984) Infrared video microscopy to visualize neurons in the in vitro brain slice preparation. J Neurosci Methods 12:133–139

    Article  PubMed  CAS  Google Scholar 

  33. Dodt HU, Zieglgänsberger W (1994) Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci 17(11):453–458

    Article  PubMed  CAS  Google Scholar 

  34. Irwin RP, Allen CN (2007) Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci 27:11748–11757

    Article  PubMed  CAS  Google Scholar 

  35. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  36. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K (2012) Spontaneous neural network oscillations in hippocampus, cortex and locus coeruleus of newborn rat and piglet brain slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  37. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  38. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442

    Article  PubMed  CAS  Google Scholar 

  39. Groos G, Hendriks J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34:283–288

    Article  PubMed  CAS  Google Scholar 

  40. Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200

    Article  PubMed  CAS  Google Scholar 

  41. Jiang ZG, Yang Y, Liu ZP, Allen CN (1997) Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J Physiol 499:141–159

    PubMed  CAS  Google Scholar 

  42. Gribkoff VK, Pieschl RL, Wisialowski TA, van den Pol AN, Yocca FD (1998) Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: mediation by different receptor subtypes. J Neurosci 18:3014–3022

    PubMed  CAS  Google Scholar 

  43. Bouskila Y, Dudek FE (1993) Neuronal synchronization without calcium-dependent synaptic transmission in the hypothalamus. Proc Natl Acad Sci USA 90:3207–3210

    Article  PubMed  CAS  Google Scholar 

  44. Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, van der Horst GT, Meijer JH (2002) Cryptochrome- deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr Biol 12:1130–1133

    Article  PubMed  CAS  Google Scholar 

  45. Brown TM, Banks JR, Piggins HD (2006) A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices. J Neurosci Methods 156:173–181

    Article  PubMed  Google Scholar 

  46. VanderLeest HT, Houben T, Michel S, Deboer T, Albus H, Vansteensel MJ, Block GD, Meijer JH (2007) Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17:468–473

    Article  PubMed  CAS  Google Scholar 

  47. Kim YI, Dudek FE (1991) Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms. J Physiol 444:269–287

    PubMed  CAS  Google Scholar 

  48. Colwell CS, Levine MS (1995) Excitatory synaptic transmission in neostriatal neurons: regulation by cyclic AMP-dependent mechanisms. J Neurosci 15:1704–1713

    PubMed  CAS  Google Scholar 

  49. Kim YI, Choi H-J, Colwell CS (2006) BDNF regulation of NMDA receptor-mediated synaptic currents in suprachiasmatic nucleus neurons. J Neurosci Res 84:1512–1520

    Article  PubMed  CAS  Google Scholar 

  50. Kita H, Armstrong W (1991) A biotin-containing compound N-(2-aminoethyl) biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. Neurosci Methods 37:141–150

    Article  CAS  Google Scholar 

  51. Colwell CS (2000) Rhythmic coupling among cells in the suprachiasmatic nucleus. J Neurobiol 43:379–388

    Article  PubMed  CAS  Google Scholar 

  52. Biggs JE, Lu VB, Kim H, Lai A, Todd KG, Ballanyi K, Colmers WF, Smith PA (2012) Defined medium organotypic cultures of spinal cord put ‘Pain in a Dish’. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 405–435

    Google Scholar 

  53. Tominaga K, Okamur H, Inouye ST (1994) Organotypic slice culture of the suprachiasmatic nucleus. Neurosci Biobehav Rev 18:601–604

    Article  PubMed  CAS  Google Scholar 

  54. Shinohara K, Honma S, Katsuno Y, Abe H, Honma K (1995) Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc Natl Acad Sci USA 92:7396–7400

    Article  PubMed  CAS  Google Scholar 

  55. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 99:10801–10806

    Article  PubMed  CAS  Google Scholar 

  56. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–5346

    Article  PubMed  CAS  Google Scholar 

  57. Yamazaki S, Takahashi JS (2005) Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393:288–301

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura TJ, Sellix MT, Menaker M, Block GD (2008) Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab 295:E1025–E1031

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura TJ, Sellix MT, Kudo T, Nakao N, Yoshimura T, Ebihara S, Colwell CS, Block GD (2010) Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids 75:203–212

    Article  PubMed  CAS  Google Scholar 

  60. Aujard F, Herzog ED, Block GD (2001) Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle-aged mice. Neuroscience 106:255–261

    Article  PubMed  CAS  Google Scholar 

  61. Kwak Y, Lundkvist GB, Brask J, Davidson A, Menaker M, Kristensson K, Block GD (2008) Interferon-gamma alters electrical activity and clock gene expression in suprachiasmatic nucleus neurons. J Biol Rhythms 23:150–159

    Article  PubMed  CAS  Google Scholar 

  62. Mirsky HP, Liu AC, Welsh DK, Kay SA, Doyle FJ 3rd (2009) A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci USA 106:11107–11112

    Article  PubMed  CAS  Google Scholar 

  63. Vasalou C, Herzog ED, Henson MA (2009) Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus. J Biol Rhythms 24:243–254

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Colwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nakamura, T.J., Michel, S., Block, G.D., Colwell, C.S. (2012). Neural Circuits Underlying Circadian Oscillations in Mammals: Clocks in a Dish. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics