Skip to main content

Histological Characterization of Physiologically Determined Fast-Spiking Interneurons in Slices of Primate Dorsolateral Prefrontal Cortex

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

GABA (γ-aminobutyric acid)-ergic interneurons are a structurally and functionally diverse group of cells that, together, regulate the activity of neuronal networks giving rise to the brain oscillations necessary for information processing. The phenotypes of GABAergic neurons can be classified by morphological, ­electrophysiological, and neurochemical features. However, as further information is gathered about these features and the role(s) each phenotype plays in shaping cortical function, group membership will undoubtedly change. This chapter details a set of methodologies that can be used to characterize GABAergic ­neurons in the monkey dorsolateral prefrontal cortex (DLPFC). Specifically, it (1) provides a brief protocol for the dissection of DLPFC tissue from monkeys, (2) describes electrophysiological measures used to identify GABAergic neurons, (3) details how to fill neurons for morphological analyses, and (4) describes a fluorescence imaging technique for the quantification of fluorescently labeled puncta (putative synaptic components), the colocalization of different labels in the same synaptic structure, and the quantitation of fluorescence intensity in these same structures in brain tissue sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562:9–26

    Article  PubMed  CAS  Google Scholar 

  2. Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, Barnes CA (2007) EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J Neurophysiol 98:898–910

    Article  PubMed  Google Scholar 

  3. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  PubMed  CAS  Google Scholar 

  4. Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis DA (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex 19:1597–1615

    Article  PubMed  Google Scholar 

  5. Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100:2348–2360

    Article  PubMed  CAS  Google Scholar 

  6. Melchitzky DS, Lewis DA (2008) Dendritic-targeting GABA neurons in monkey prefrontal cortex: comparison of somatostatin- and ­calretinin-immunoreactive axon terminals. Synapse 62:456–465

    Article  PubMed  CAS  Google Scholar 

  7. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122

    Article  PubMed  CAS  Google Scholar 

  8. De Felipe J (2001) Cortical interneurons: from Cajal to 2001. Prog Brain Res 136:215–238

    Article  Google Scholar 

  9. De Felipe J, Ballesteros-Yanez I, Inda MC, Munoz A (2006) Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18. Prog Brain Res 154:15–32

    Article  Google Scholar 

  10. De Felipe J, Jones EG (1988) A light and electron microscopic study of serotonin-immunoreactive fibers and terminals in the monkey sensory-motor cortex. Exp Brain Res 71:171–182

    Google Scholar 

  11. Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364:609–636

    Article  PubMed  CAS  Google Scholar 

  12. Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. J Comp Neurol 364:567–608

    Article  PubMed  CAS  Google Scholar 

  13. Jones EG (2009) The origins of cortical interneurons: mouse versus monkey and human. Cereb Cortex 19:1953–1956

    Article  PubMed  Google Scholar 

  14. Meyer G (2007) Genetic control of neuronal migrations in human cortical development. Adv Anat Embryol Cell Biol 189:1–111, 1 p preceding

    Article  PubMed  Google Scholar 

  15. Rakic S, Zecevic N (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 13:1072–1083

    Article  PubMed  Google Scholar 

  16. Yanez IB, Munoz A, Contreras J, Gonzalez J, Rodriguez-Veiga E, De Felipe J (2005) Double bouquet cell in the human cerebral cortex and a comparison with other mammals. J Comp Neurol 486:344–360

    Article  PubMed  Google Scholar 

  17. Cruz DA, Lovallo EM, Stockton S, Rasband M, Lewis DA (2009) Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex. J Comp Neurol 514:353–367

    Article  PubMed  CAS  Google Scholar 

  18. Gabbott PLA, Dickie BGM, Vaid RR, Headlam AJM, Bacon SJ (1997) Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465–499

    Article  PubMed  CAS  Google Scholar 

  19. Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    Article  PubMed  CAS  Google Scholar 

  20. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  PubMed  CAS  Google Scholar 

  21. Povysheva NV, Zaitsev AV, Kroner S, Krimer OA, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2007) Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J Neurophysiol 97:1030–1039

    Article  PubMed  CAS  Google Scholar 

  22. Krimer LS, Zaitsev AV, Czanner G, Kroner S, Gonzalez-Burgos G, Povysheva NV, Iyengar S, Barrionuevo G, Lewis DA (2005) Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. J Neurophysiol 94:3009–3022

    Article  PubMed  Google Scholar 

  23. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  24. Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp Neurol 328:282–312

    Article  PubMed  CAS  Google Scholar 

  25. De Felipe J (1999) Chandelier cells and epilepsy. Brain 122:1807–1822

    Article  Google Scholar 

  26. Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kroner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15: 1178–1186

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Burgos G, Krimer LS, Povysheva NV, Barrionuevo G, Lewis DA (2005) Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. J Neurophysiol 93:942–953

    Article  PubMed  Google Scholar 

  28. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31: 277–287

    Article  PubMed  Google Scholar 

  29. Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17:3894–3906

    PubMed  CAS  Google Scholar 

  30. Swedlow JR, Platani M (2002) Live cell imaging using wide-field microscopy and deconvolution. Cell Struct Funct 27:335–341

    Article  PubMed  Google Scholar 

  31. Murray JM, Appleton PL, Swedlow JR, Waters JC (2007) Evaluating performance in three-dimensional fluorescence microscopy. J Microsc 228:390–405

    Article  PubMed  Google Scholar 

  32. Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–159

    Article  PubMed  CAS  Google Scholar 

  33. Sandison DR, Webb WW (1994) Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Appl Opt 33:603–615

    Article  PubMed  CAS  Google Scholar 

  34. Benveniste M, Schlessinger J, Kam Z (1989) Characterization of internalization and endosome formation of epidermal growth factor in transfected NIH-3 T3 cells by computerized image-intensified three-dimensional fluorescence microscopy. J Cell Biol 109:2105–2115

    Article  PubMed  CAS  Google Scholar 

  35. Hiraoka Y, Agard DA, Sedat JW (1990) Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J Cell Biol 111:2815–2828

    Article  PubMed  CAS  Google Scholar 

  36. Shaw PJ (2006) Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York, pp 453–467

    Chapter  Google Scholar 

  37. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch 423:511–518

    Article  PubMed  CAS  Google Scholar 

  38. Sakmann B, Edwards F, Konnerth A, Takahashi T (1989) Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain. Q J Exp Physiol 74:1107–1118

    PubMed  CAS  Google Scholar 

  39. Dodt HU, Eder M, Schierloh A, Zieglgänsberger W (2002) Infrared-guided laser stimulation of neurons in brain slices. Sci STKE 2002(120):pl2

    Article  PubMed  Google Scholar 

  40. Dodt HU, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336

    Article  PubMed  CAS  Google Scholar 

  41. MacVicar BA, Hochman D (1991) Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J Neurosci 11:1458–1469

    PubMed  CAS  Google Scholar 

  42. Gonzalez-Burgos G, Barrionuevo G, Lewis DA (2000) Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb Cortex 10:82–92

    Article  PubMed  CAS  Google Scholar 

  43. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling Vagal outflow in Rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  44. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  45. Moore AR, Zhou W, Jakovcevski I, Zecevic N, Antic S (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  46. Sun XJ, Tolbert LP, Hildebrand JG, Meinertzhagen IA (1998) A rapid method for combined laser scanning confocal microscopic and electron microscopic visualization of biocytin or neurobiotin-labeled neurons. J Histochem Cytochem 46:263–273

    Article  PubMed  CAS  Google Scholar 

  47. Stuart G (1998) Patch-pipette recording in brain slices. Curr Protoc Neurosci 6.7:6.7.1–6.7.10

    Google Scholar 

  48. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  49. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas J, Cheung PY, Ballanyi K (2012) Early network oscillations in cortex and locus coeruleus of horizontal brain slices from newborn mammals. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  50. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    Article  PubMed  CAS  Google Scholar 

  51. Luhmann HJ, Kilb W (2012) Intact in vitro preparation of the neonatal rodent cerebral cortex-analysis of cellular properties and network activity. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 301–314

    Google Scholar 

  52. Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang ZW, Sampson AR, Lewis DA (2008) Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 63:759–765

    Article  PubMed  CAS  Google Scholar 

  53. Fish KN, Sweet RA, Deo AJ, Lewis DA (2008) An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections. Brain Res 1240:62–72

    Article  PubMed  CAS  Google Scholar 

  54. Sweet RA, Fish KN, Lewis DA (2010) Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia. Front Hum Neurosci 4:1–14

    Google Scholar 

  55. Sugiyama Y, Kawabata I, Sobue K, Okabe S (2005) Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2:677–684

    Article  PubMed  CAS  Google Scholar 

  56. Hohensee S, Bleiss W, Duch C (2008) Correlative electron and confocal microscopy assessment of synapse localization in the ­central nervous system of an insect. J Neurosci Methods 168:64–70

    Article  PubMed  Google Scholar 

  57. Glynn MW, McAllister AK (2006) Immunocytochemistry and quantification of protein colocalization in cultured neurons. Nat Protoc 1:1287–1296

    Article  PubMed  CAS  Google Scholar 

  58. Darya K, Ganguly A, Lee D (2009) Quantitative analysis of synaptic boutons in Drosophila ­primary neuronal cultures. Brain Res 1280:1–12

    Article  PubMed  CAS  Google Scholar 

  59. Bergsman JB, Krueger SR, Fitzsimonds RM (2006) Automated criteria-based selection and analysis of fluorescent synaptic puncta. J Neurosci Methods 152:32–39

    Article  PubMed  Google Scholar 

  60. Wallace W, Schaefer LH, Swedlow JR (2001) A working person’s guide to deconvolution in light microscopy. Biotechniques 31:1076–1078

    PubMed  CAS  Google Scholar 

  61. Agard DA (1984) Optical sectioning ­microscopy: cellular architecture in three dimensions. Annu Rev Biophys Bioeng 13:191–219

    Article  PubMed  CAS  Google Scholar 

  62. Rodriguez A, Ehlenberger D, Kelliher K, Einstein M, Henderson SC, Morrison JH, Hof PR, Wearne SL (2003) Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30:94–105

    Article  PubMed  CAS  Google Scholar 

  63. McGarry L, Packer A, Fino E, Nikolenko V, Sippy T, Yuste R (2010) Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Front Neural Circuits 4:12

    PubMed  Google Scholar 

  64. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  PubMed  CAS  Google Scholar 

  65. Conde ÇF, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28 k, or parvalbumin in monkey prefrontal cortex: distribution and ­morphology. J Comp Neurol 341:95–116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIMH (MH051234 and MH084053 to DAL, MH085108 to KNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth N. Fish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fish, K.N., Gonzalez-Burgos, G., Zaitsev, A.V., Lewis, D.A. (2012). Histological Characterization of Physiologically Determined Fast-Spiking Interneurons in Slices of Primate Dorsolateral Prefrontal Cortex. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics