Skip to main content

Rodent Isolated Spinal Cord Preparations to Examine Motor Output

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

Understanding mammalian neural networks such as the central pattern generator (CPG) for locomotion requires the use of multiple experimental models. In vitro approaches provide easy access to the spinal cord, thus allowing more experimental tools to be used. In this chapter, some established and new tools are outlined that are being used to advance our understanding of CPG function at both cellular and ­network levels. A variety of in vitro models exist including the isolated spinal cord, brainstem-spinal cord, and spinal cord leg-attached preparations. There are also a variety of ways to activate spinal CPGs using these preparations. Choosing which preparation and mode of CPG activation will vary depending on the question being asked. This chapter will review some of the common approaches used and also examine optogenetic, genetic, and Ca2+ imaging approaches that are being used to dissect the structure and function of CPGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21:321–333

    PubMed  CAS  Google Scholar 

  2. Smith JC, Feldman JL, Schmidt BJ (1988) Neural mechanisms generating locomotion studied in mammalian brain stem-spinal cord in vitro. FASEB J 2:2283–2288

    PubMed  CAS  Google Scholar 

  3. Kiehn O, Kjaerulff O (1996) Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J Neurophysiol 75: 1472–1482

    PubMed  CAS  Google Scholar 

  4. Iizuka M, Kiehn O, Kudo N (1997) Development in neonatal rats of the sensory resetting of the locomotor rhythm induced by NMDA and 5-HT. Exp Brain Res 114: 193–204

    PubMed  CAS  Google Scholar 

  5. Whelan P, Bonnot A, O’donovan MJ (2000) Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J Neurophysiol 84:2821–2833

    PubMed  CAS  Google Scholar 

  6. Atsuta Y, Garcia-Rill E, Skinner RD (1990) Characteristics of electrically induced locomotion in rat in vitro brain stem-spinal cord preparation. J Neurophysiol 64:727–735

    PubMed  CAS  Google Scholar 

  7. Gordon IT, Whelan PJ (2008) Brainstem modulation of locomotion in the neonatal mouse spinal cord. J Physiol 586:2487–2497

    PubMed  CAS  Google Scholar 

  8. Zaporozhets E, Cowley KC, Schmidt BJ (2004) A reliable technique for the induction of locomotor-like activity in the in vitro neonatal rat spinal cord using brainstem electrical stimulation. J Neurosci Methods 139:33–41

    PubMed  Google Scholar 

  9. Liu J, Jordan LM (2005) Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J Neurophysiol 94:1392–1404

    PubMed  CAS  Google Scholar 

  10. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  11. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated Brainstem Respiratory Centers from Perinatal Rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  12. Biggs JE, Lu VB, Kim H, Lai A, Todd KG, Ballanyi K, Colmers WF, Smith PA (2012) Defined medium organotypic cultures of spinal cord put ‘pain in a dish’. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 405–435

    Google Scholar 

  13. Curtis DR, Phillis JW, Watkins JC (1961) Actions of amino acids on the isolated hemisected spinal cord of the toad. Br J Pharmacol Chemother 16:262–283

    PubMed  CAS  Google Scholar 

  14. Suzue T, Jessell T (1980) Opiate analgesics and endorphins inhibit rat dorsal root potential in vitro. Neurosci Lett 16:161–166

    PubMed  CAS  Google Scholar 

  15. Cohen AH, Wallén P (1980) The neuronal correlate of locomotion in fish. “Fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41:11–18

    PubMed  CAS  Google Scholar 

  16. Smith JC, Feldman JL (1985) Motor patterns for respiration and locomotion generated by an in vitro brainstem-spinal cord from neonatal rat. Soc Neurosci Abstracts, p 11:24

    Google Scholar 

  17. Bonnot A, Morin D, Viala D (1998) Genesis of spontaneous rhythmic motor patterns in the lumbosacral spinal cord of neonate mouse. Brain Res Dev Brain Res 108:89–99

    PubMed  CAS  Google Scholar 

  18. Bonnot A, Morin D (1998) Hemisegmental localisation of rhythmic networks in the lumbosacral spinal cord of neonate mouse. Brain Res 793:136–148

    PubMed  CAS  Google Scholar 

  19. Butt SJB, Harris-Warrick RM, Kiehn O (2002) Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator. J Neurosci 22:9961–9971

    PubMed  CAS  Google Scholar 

  20. Butt SJB, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963

    PubMed  CAS  Google Scholar 

  21. Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE, Lundfald L, Endo T, Setlak J, Jessell TM, Kiehn O, Sharma K (2008) Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60:70–83

    PubMed  CAS  Google Scholar 

  22. Zhong G, Droho S, Crone SA, Dietz S, Kwan AC, Webb WW, Sharma K, Harris-Warrick RM (2010) Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J Neurosci 30:170–182

    PubMed  CAS  Google Scholar 

  23. Crone SA, Zhong G, Harris-Warrick R, Sharma K (2009) In mice lacking V2a interneurons, gait depends on speed of locomotion. J Neurosci 29:7098–7109

    PubMed  CAS  Google Scholar 

  24. Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    PubMed  CAS  Google Scholar 

  25. Whelan PJ (2010) Shining light into the black box of spinal locomotor networks. Philos Trans R Soc Lond B Biol Sci 365: 2383–2395

    PubMed  Google Scholar 

  26. Goulding M (2009) Circuits controlling ­vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    PubMed  CAS  Google Scholar 

  27. Cangiano L, Grillner S (2003) Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. J Neurophysiol 89: 2931–2942

    PubMed  CAS  Google Scholar 

  28. Bem T, Cabelguen JM, Ekeberg O, Grillner S (2003) From swimming to walking: a single basic network for two different behaviors. Biol Cybern 88:79–90

    PubMed  Google Scholar 

  29. McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    PubMed  Google Scholar 

  30. Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc B Biol Sci 84:308–319

    Google Scholar 

  31. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352

    PubMed  CAS  Google Scholar 

  32. Norris BJ, Wenning A, Wright TM, Calabrese RL (2011) Constancy and variability in the output of a central pattern generator. J Neurosci 31:4663–4674

    PubMed  CAS  Google Scholar 

  33. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  34. McHanwell S, Biscoe TJ (1981) The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond B Biol Sci 293:477–508

    PubMed  CAS  Google Scholar 

  35. Nakamura TJ, Michel S, Block GD, Colwell CS (2012) Neural circuits underlying circadian oscillations in mammals: clocks in a dish. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 183–210

    Google Scholar 

  36. Wilson R, Chersa T, Whelan P (2003) Tissue PO2 and the effects of hypoxia on the generation of locomotor-like activity in the in vitro spinal cord of the neonatal mouse. Neuroscience 117:183–196

    PubMed  CAS  Google Scholar 

  37. Jiang MC, Heckman CJ (2006) In vitro sacral cord preparation and motoneuron recording from adult mice. J Neurosci Methods 156: 31–36

    PubMed  CAS  Google Scholar 

  38. Carp JS, Tennissen AM, Mongeluzi DL, Dudek CJ, Chen XY, Wolpaw JR (2008) An in vitro protocol for recording from spinal motoneurons of adult rats. J Neurophysiol 100:474–481

    PubMed  Google Scholar 

  39. Sqalli-Houssaini Y, Cazalets JR, Clarac F (1993) Oscillatory properties of the central pattern generator for locomotion in neonatal rats. J Neurophysiol 70:803–813

    PubMed  CAS  Google Scholar 

  40. Jiang Z, Carlin KP, Brownstone RM (1999) An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res 816:493–499

    PubMed  CAS  Google Scholar 

  41. Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J Neurosci 15:4943–4951

    PubMed  CAS  Google Scholar 

  42. Cazalets JR, Grillner P, Menard I, Cremieux J, Clarac F (1990) Two types of motor rhythm induced by NMDA and amines in an in vitro spinal cord preparation of neonatal rat. Neurosci Lett 111:116–121

    PubMed  CAS  Google Scholar 

  43. Cowley KC, Schmidt BJ (1994) A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci Lett 171:147–150

    PubMed  CAS  Google Scholar 

  44. Klein DA, Tresch MC (2010) Specificity of intramuscular activation during rhythms produced by spinal patterning systems in the in vitro neonatal rat with hindlimb attached preparation. J Neurophysiol 104:2158–2168

    PubMed  CAS  Google Scholar 

  45. Prinz AA (2006) Insights from models of rhythmic motor systems. Curr Opin Neurobiol 16:615–620

    PubMed  CAS  Google Scholar 

  46. Marchetti C, Beato M, Nistri A (2001) Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitro. J Physiol 530:105–112

    PubMed  CAS  Google Scholar 

  47. Lev-Tov A, Delvolvé I, Kremer E (2000) Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats. J Neurophysiol 83:888–894

    PubMed  CAS  Google Scholar 

  48. Bonnot A, Whelan PJ, Mentis GZ, O’Donovan MJ (2002) Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res Brain Res Rev 40:141–151

    PubMed  Google Scholar 

  49. Strauss I, Lev-Tov A (2003) Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats. J Neurophysiol 89:773–784

    PubMed  CAS  Google Scholar 

  50. Norreel J, Pflieger J, Pearlstein E, Simeoni-Alias J, Clarac F, Vinay L (2003) Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat. J Neurosci 23:1924–1932

    PubMed  CAS  Google Scholar 

  51. Blivis D, Mentis GZ, O’donovan MJ, Lev-Tov A (2007) Differential effects of opioids on sacrocaudal afferent pathways and central pattern generators in the neonatal rat spinal cord. J Neurophysiol 97:2875–2886

    PubMed  CAS  Google Scholar 

  52. Mandadi S, Nakanishi ST, Takashima Y, Dhaka A, Patapoutian A, McKemy DD, Whelan PJ (2009) Locomotor networks are targets of modulation by sensory transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 channels. Neuroscience 162:1377–1397

    PubMed  CAS  Google Scholar 

  53. Li Y, Burke RE (2002) Developmental changes in short-term synaptic depression in the neonatal mouse spinal cord. J Neurophysiol 88:3218–3231

    PubMed  Google Scholar 

  54. Gordon IT, Whelan PJ (2006) Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 96:3122–3129

    PubMed  Google Scholar 

  55. Magnuson DS, Trinder TC (1997) Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro. J Neurophysiol 77:200–206

    PubMed  CAS  Google Scholar 

  56. Bonnot A, Chub N, Pujala A, O’Donovan MJ (2009) Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord. J Neurophysiol 101:2995–3011

    PubMed  Google Scholar 

  57. Mentis GZ, Alvarez FJ, Bonnot A, Richards DS, Gonzalez-Forero D, Zerda R, O’Donovan MJ (2005) Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc Natl Acad Sci USA 102:7344–7349

    PubMed  CAS  Google Scholar 

  58. Cazalets JR, Sqalli-Houssaini Y, Clarac F (1992) Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol 455:187–204

    PubMed  CAS  Google Scholar 

  59. Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Brain Res Rev 57: 183–191

    CAS  Google Scholar 

  60. Gordon IT, Dunbar MJ, Vanneste KJ, Whelan PJ (2008) Interaction between developing spinal locomotor networks in the neonatal mouse. J Neurophysiol 100:117–128

    PubMed  Google Scholar 

  61. Dunbar MJ, Tran MA, Whelan PJ (2010) Endogenous extracellular serotonin modulates the spinal locomotor network of the neonatal mouse. J Physiol 588:139–156

    PubMed  CAS  Google Scholar 

  62. Whelan PJ, Wilson RJA (2001) Depth profiles of PO2 within the isolated in vitro mouse spinal cord during locomotor-like activity. In: Society for neuroscience. p Program No. 297.3. San Diego

    Google Scholar 

  63. Okada Y, Mückenhoff K, Holtermann G, Acker H, Scheid P (1993) Depth profiles of pH and PO2 in the isolated brain stem-spinal cord of the neonatal rat. Respir Physiol 93: 315–326

    PubMed  CAS  Google Scholar 

  64. Brockhaus J, Ballanyi K, Smith JC, Richter DW (1993) Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats. J Physiol 462:421–445

    PubMed  CAS  Google Scholar 

  65. Mandadi S, Whelan PJ (2009) A new method to study sensory modulation of locomotor networks by activation of thermosensitive cutaneous afferents using a hindlimb attached spinal cord preparation. J Neurosci Methods 182:255–259

    PubMed  Google Scholar 

  66. Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49:481–515

    PubMed  CAS  Google Scholar 

  67. Hayes HB, Chang Y, Hochman S (2009) An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function. J Neurophysiol 101:1114–1122

    PubMed  Google Scholar 

  68. Hayes HB, Chang Y, Hochman S (2009) Afferent signaling and interneuronal activity during non-fictive locomotion in the in vitro spinal cord – hindlimb rat preparation. In: Society for neuroscience. p Program no. 564.10. Chicago

    Google Scholar 

  69. Pickering AE, Paton JFR (2006) A decerebrate, artificially-perfused in situ preparation of rat: utility for the study of autonomic and nociceptive processing. J Neurosci Methods 155:260–271

    PubMed  Google Scholar 

  70. Paton JF (1996) A working heart-brainstem preparation of the mouse. J Neurosci Methods 65:63–68

    PubMed  CAS  Google Scholar 

  71. Chizh BA, Headley PM, Paton JF (1997) An arterially-perfused trunk-hindquarters preparation of adult mouse in vitro. J Neurosci Methods 76:177–182

    PubMed  CAS  Google Scholar 

  72. Paton JF (1996) The ventral medullary respiratory network of the mature mouse studied in a working heart-brainstem preparation. J Physiol 493:819–831

    PubMed  CAS  Google Scholar 

  73. Day TA, Wilson RJA (2007) Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation. J Physiol 578:843–857

    PubMed  CAS  Google Scholar 

  74. Li CL, McILWAIN H (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J Physiol 139:178–190

    PubMed  CAS  Google Scholar 

  75. Collingridge GL (1995) The brain slice preparation: a tribute to the pioneer Henry McIlwain. J Neurosci Methods 59:5–9

    PubMed  CAS  Google Scholar 

  76. Jonas P, Bischofberger J, Sandkühler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424

    PubMed  CAS  Google Scholar 

  77. Miles GB, Dai Y, Brownstone RM (2005) Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurons. J Physiol 566:519–532

    PubMed  CAS  Google Scholar 

  78. Wilson JM, Hartley R, Maxwell DJ, Todd AJ, Lieberam I, Kaltschmidt JA, Yoshida Y, Jessell TM, Brownstone RM (2005) Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J Neurosci 25:5710–5719

    PubMed  CAS  Google Scholar 

  79. Zhong G, Díaz-Ríos M, Harris-Warrick RM (2006) Intrinsic and functional differences among commissural interneurons during ­fictive locomotion and serotonergic modulation in the neonatal mouse. J Neurosci 26: 6509–6517

    PubMed  CAS  Google Scholar 

  80. Nohda K, Nakatsuka T, Takeda D, Miyazaki N, Nishi H, Sonobe H, Yoshida M (2007) Selective vulnerability to ischemia in the rat spinal cord: a comparison between ventral and dorsal horn neurons. Spine 32:1060–1066

    PubMed  Google Scholar 

  81. von Lewinski F, Keller BU (2005) Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci 28:494–500

    Google Scholar 

  82. Duggal N, Lach B (2002) Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 33:116–121

    PubMed  CAS  Google Scholar 

  83. Carriedo SG, Yin HZ, Weiss JH (1996) Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 16:4069–4079

    PubMed  CAS  Google Scholar 

  84. Zhong G, Díaz-Ríos M, Harris-Warrick RM (2006) Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. J Neurophysiol 95:1545–1555

    PubMed  CAS  Google Scholar 

  85. Han P, Nakanishi ST, Tran MA, Whelan PJ (2007) Dopaminergic modulation of spinal neuronal excitability. J Neurosci 27:13192–13204

    PubMed  CAS  Google Scholar 

  86. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456

    PubMed  CAS  Google Scholar 

  87. Wilson JM, Dombeck DA, Díaz-Ríos M, Harris-Warrick RM, Brownstone RM (2007) Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse. J Neurophysiol 97:3118–3125

    PubMed  CAS  Google Scholar 

  88. Kjaerulff O, Kiehn O (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 16: 5777–5794

    PubMed  CAS  Google Scholar 

  89. Dyck J, Gosgnach S (2009) Whole cell recordings from visualized neurons in the inner ­laminae of the functionally intact spinal cord. J Neurophysiol 102:590–597

    PubMed  Google Scholar 

  90. Christie KJ, Whelan PJ (2005) Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. J Neurophysiol 94:1554–1564

    PubMed  Google Scholar 

  91. O’Donovan MJ, Bonnot A, Mentis GZ, Arai Y, Chub N, Shneider NA, Wenner P (2008) Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Dev Neurobiol 68:788–803

    PubMed  Google Scholar 

  92. Ritter A, Wenner P, Ho S, Whelan PJ, O’donovan MJ (1999) Activity patterns and synaptic organization of ventrally located interneurons in the embryonic chick spinal cord. J Neurosci 19:3457–3471

    PubMed  CAS  Google Scholar 

  93. Wenner P, O’donovan MJ (1999) Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord. J Neurosci 19:7557–7567

    PubMed  CAS  Google Scholar 

  94. Fedirchuk B, Wenner P, Whelan PJ, Ho S, Tabak J, O’Donovan MJ (1999) Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. J Neurosci 19:2102–2112

    PubMed  CAS  Google Scholar 

  95. Kremer E, Lev-Tov A (1997) Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J Neurophysiol 77:1155–1170

    PubMed  CAS  Google Scholar 

  96. Madriaga MA, McPhee LC, Chersa T, Christie KJ, Whelan PJ (2004) Modulation of locomotor activity by multiple 5-HT and dopaminergic receptor subtypes in the neonatal mouse spinal cord. J Neurophysiol 92:1566–1576

    PubMed  CAS  Google Scholar 

  97. Mor Y, Lev-Tov A (2007) Analysis of rhythmic patterns produced by spinal neural networks. J Neurophysiol 98:2807–2817

    PubMed  CAS  Google Scholar 

  98. Pearson SA, Mouihate A, Pittman QJ, Whelan PJ (2003) Peptidergic activation of locomotor pattern generators in the neonatal spinal cord. J Neurosci 23:10154–10163

    PubMed  CAS  Google Scholar 

  99. Kullander K, Butt SJB, Lebret JM, Lundfald L, Restrepo CE, Rydström A, Klein R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892

    PubMed  CAS  Google Scholar 

  100. Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42: 375–386

    PubMed  CAS  Google Scholar 

  101. Gosgnach S, Lanuza GM, Butt SJB, Saueressig H, Zhang Y, Velasquez T, Riethmacher D, Callaway EM, Kiehn O, Goulding M (2006) V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440: 215–219

    PubMed  CAS  Google Scholar 

  102. Dougherty KJ, Kiehn O (2010) Firing and cellular properties of V2a interneurons in the rodent spinal cord. J Neurosci 30:24–37

    PubMed  CAS  Google Scholar 

  103. Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    PubMed  CAS  Google Scholar 

  104. Lundfald L, Restrepo CE, Butt SJB, Peng C, Droho S, Endo T, Zeilhofer HU, Sharma K, Kiehn O (2007) Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur J Neurosci 26:2989–3002

    PubMed  Google Scholar 

  105. Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan C, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60:84–96

    PubMed  CAS  Google Scholar 

  106. Hinckley CA, Hartley R, Wu L, Todd AJ, Ziskind-Conhaim LH (2005) Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. J Neurophysiol 93:1439–1449

    PubMed  Google Scholar 

  107. Kwan AC, Dietz SB, Webb WW, Harris-Warrick RM (2009) Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord. J Neurosci 29:11601–11613

    PubMed  CAS  Google Scholar 

  108. Lechner HAE, Lein ES, Callaway EM (2002) A genetic method for selective and quickly reversible silencing of Mammalian neurons. J Neurosci 22:5287–5290

    PubMed  CAS  Google Scholar 

  109. Duchcherer M, Kottick A, Wilson RJ (2010) Evidence for a distributed respiratory rhythm generating network in the goldfish (carssius auratus). In: Homma I (ed) Advances. Springer

    Google Scholar 

  110. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    PubMed  CAS  Google Scholar 

  111. Hägglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13:246–252

    PubMed  Google Scholar 

  112. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    PubMed  CAS  Google Scholar 

  113. O’Donovan MJ, Ho S, Sholomenko G, Yee W (1993) Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes. J Neurosci Methods 46:91–106

    PubMed  Google Scholar 

  114. O’Donovan M, Ho S, Yee W (1994) Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo. J Neurosci 14:6354–6369

    PubMed  Google Scholar 

  115. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon ­calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    PubMed  CAS  Google Scholar 

  116. Ruangkittisakul A, Schwarzacher SW, Secchia L, Poon BY, Ma Y, Funk GD, Ballanyi K (2006) High sensitivity to neuromodulator-activated signaling pathways at physiological [K+] of confocally imaged respiratory center neurons in on-line-calibrated newborn rat brainstem slices. J Neurosci 26:11870–11880

    PubMed  CAS  Google Scholar 

  117. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K (2012) Spontaneous neural network oscillations in hippocampus, cortex and locus coeruleus of newborn rat and piglet brain slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  118. Fields RD, O’Donovan MJ (2001) Imaging nervous system activity. Curr Protoc Neurosci. Chapter 2. Unit 2 3

    Google Scholar 

  119. Bonnot A, Whelan PJ, Mentis GZ, O’Donovan MJ (2002) Spatiotemporal pattern of motoneuron activation in the rostral lumbar and the sacral segments during locomotor-like activity in the neonatal mouse spinal cord. J Neurosci 22:RC203

    PubMed  Google Scholar 

  120. Bonnot A, Mentis GZ, Skoch J, O’donovan MJ (2005) Electroporation loading of ­calcium-sensitive dyes into the CNS. J Neurophysiol 93:1793–1808

    PubMed  Google Scholar 

  121. Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509

    PubMed  CAS  Google Scholar 

  122. Arai Y, Mentis GZ, Wu J, O’Donovan MJ (2007) Ventrolateral origin of each cycle of rhythmic activity generated by the spinal cord of the chick embryo. PLoS One 2:e417

    PubMed  Google Scholar 

  123. Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal ­circuitry involved in locomotor pattern ­generation: insights from deletions during ­fictive locomotion. J Physiol 577: 617–639

    PubMed  CAS  Google Scholar 

  124. Akay T, Acharya HJ, Fouad K, Pearson KG (2006) Behavioral and electromyographic characterization of mice lacking EphA4 receptors. J Neurophysiol 96:642–651

    PubMed  CAS  Google Scholar 

  125. Wenner P, Tsau Y, Cohen LB, O’donovan MJ, Dan Y (1996) Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics. J Neurosci Methods 70:111–120

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the excellent technical assistance of Michelle Tran. Support from the Canadian Institutes of Health Research, Christopher Reeve Paralysis Foundation, the Heart and Stroke Foundation of Canada, and the Natural Sciences and Engineering Research Council is gratefully acknowledged. Dr. Patrick Whelan is a Senior Scholar of the Alberta Heritage Foundation for Medical Research (AHFMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mandadi, S., Nakanishi, S.T., Han, P., Humphreys, J.M., Whelan, P.J. (2012). Rodent Isolated Spinal Cord Preparations to Examine Motor Output. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics