Skip to main content

Defined Medium Organotypic Cultures of Spinal Cord Put ‘Pain in a Dish’

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

Nerve injury and/or disease are known to provoke the release of various neurotrophic and inflammatory agents from spinal microglia and astrocytes. Prolonged exposure of spinal neurons to these ‘nociceptive mediators’ invokes pathophysiological changes that lead to the ‘central sensitization’ which characterizes chronic pain. In order to investigate their actions, it is necessary to expose spinal neural networks to individual putative mediators for prolonged periods as would occur following injury or in the presence of disease. Because this is not feasible using acutely isolated spinal cord slices, we developed a defined medium organotypic spinal cord culture model which retains the structural and synaptic organization of the spinal cord in vivo. This ‘pain in a dish’ system represents an exciting new methodology for the investigation of the pathophysiological processes that underlie chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACSF:

Artificial cerebrospinal fluid

AdGFP:

Adenovirus containing green fluorescent protein

AM:

AcetoxyMethyl

aMCM:

Activated microglia-conditioned medium

ANOVA:

Analysis of variance assay

AraC:

Cytosine-b-D-arabinofuranoside

AUC:

Area under curve

BDNF:

Brain-derived neurotrophic factor

CCI:

Chronic constriction injury

CMV:

Cytomegalovirus

DMEM:

Dulbecco’s modified Eagle’s medium

DMOTC:

Defined medium organotypic cultures

DRG:

Dorsal root ganglion

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

GAD:

Glutamic acid decarboxylase

GcaMP:

GFP-calmodulin-protein

GFP:

Green fluorescent protein

HBSS:

Hanks buffered saline solution

IR-DIC:

Infrared differential interference contrast

Im :

Membrane current

LPS:

Lipopolysaccharide

NGF:

Nerve growth factor

OTC:

Organotypic

PBS:

Phosphate-buffered saline

ROI:

Region of interest

siRNA:

Small interfering ribonucleic acid

vGlut:

Glutamate vesicular transporter

Vm :

Membrane potential

References

  1. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306:686–688

    Article  PubMed  CAS  Google Scholar 

  2. Sandkühler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  Google Scholar 

  3. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  PubMed  CAS  Google Scholar 

  4. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017–1021

    Article  PubMed  CAS  Google Scholar 

  5. Lu VB, Biggs JE, Stebbing MJ, Balasubramanyan S, Todd KG, Lai AY, Colmers WF, Dawbarn D, Ballanyi K, Smith PA (2009) BDNF Drives the changes in excitatory synaptic transmission in the rat superficial dorsal horn that follow sciatic nerve injury. J Physiol 587:1013–1032

    Article  PubMed  CAS  Google Scholar 

  6. Ballerini L, Galante M (1998) Network bursting by organotypic spinal slice cultures in the presence of bicuculline and/or strychnine is developmentally regulated. Eur J Neurosci 10:2871–2879

    Article  PubMed  CAS  Google Scholar 

  7. Avossa D, Rosato-Siri MD, Mazzarol F, Ballerini L (2003) Spinal circuits formation: a study of developmentally regulated markers in organotypic cultures of embryonic mouse spinal cord. Neuroscience 122:391–405

    Article  PubMed  CAS  Google Scholar 

  8. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  PubMed  Google Scholar 

  9. De Simoni A, Griesinger CB, Edwards FA (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol 550:135–147

    Article  PubMed  Google Scholar 

  10. Gähwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    Article  PubMed  Google Scholar 

  11. Lu VB, Moran TD, Balasubramanyan S, Alier KA, Dryden WF, Colmers WF, Smith PA (2006) Substantia Gelatinosa neurons in defined-medium organotypic slice culture are similar to those in acute slices from young adult rats. Pain 121:261–275

    Google Scholar 

  12. Lu VB, Colmers WF, Smith PA (2009) Long-term effects of brain-derived neurotrophic ­factor on the frequency of inhibitory synaptic events in the rat superficial dorsal horn. Neuroscience 161:1135–1143

    Article  PubMed  CAS  Google Scholar 

  13. Lu VB, Ballanyi K, Colmers WF, Smith PA (2007) Neuron type-specific effects of brain-derived neurotrophic factor in rat superficial dorsal horn and their relevance to ‘central sensitization’. J Physiol 584:543–563

    Article  PubMed  CAS  Google Scholar 

  14. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  15. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  16. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K (2012) Spontaneous neural network oscillations in hippocampus, cortex and locus coeruleus of newborn rat and piglet brain slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  17. De Curtis M, Lilbrizzi L, Uva L, Gnatkovsky V (2012) Neuronal networks in the in vitro isolated guinea pig brain. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 357–383

    Google Scholar 

  18. Mandadi S, Nakanishi ST, Han P, Humphreys J, Whelan PJ (2012) The use of rodent isolated spinal cord preparations to examine motor output. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 437–464

    Google Scholar 

  19. Gustafson-Vickers SL, Lu VB, Lai AY, Todd KG, Ballanyi K, Smith PA (2008) Long-term actions of interleukin-1beta on delay and tonic firing neurons in rat superficial dorsal horn and their relevance to central sensitization. Mol Pain 4:63

    Article  PubMed  Google Scholar 

  20. Balasubramanyan S, Stemkowski PL, Stebbing MJ, Smith PA (2006) Sciatic chronic constriction injury produces cell-type specific changes in the electrophysiological properties of rat Substantia Gelatinosa neurons. J Neurophysiol 96:579–590

    Article  PubMed  Google Scholar 

  21. Biggs JE, Lu VB, Stebbing MJ, Balasubramanyan S, Smith PA (2010) Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization? Mol Pain 6:44

    Article  PubMed  Google Scholar 

  22. Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in ‘small’ glia. Trends Neurosci 28:101–107

    Article  PubMed  CAS  Google Scholar 

  23. Echeverry S, Shi XQ, Zhang J (2007) Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain 135:37–47

    Article  PubMed  Google Scholar 

  24. Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, Wratten J, Davies A, Dolphin AC (2008) Pharmacological disruption of calcium channel trafficking by the alpha/2delta ligand gabapentin. Proc Natl Acad Sci USA 105:3628–3633

    Article  PubMed  CAS  Google Scholar 

  25. Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, Kadurin I, Sri Ranjan Y, Fernandez-Alacid L, Millar NS, Dickenson AH, Lujan R, Dolphin AC (2009) The increased trafficking of the calcium channel subunit alpha2/delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2/delta ligand pregabalin. J Neurosci 29:4076–4088

    Article  PubMed  CAS  Google Scholar 

  26. Biggs JE, Balasubramanyan S, Ballanyi K, Smith PA (2008) Chronic Gabapentin acts intracellularly to reduce dorsal horn excitability. Soc Neurosci Abs Abstract # 569.6/LL6

    Google Scholar 

  27. Luhmann HJ, Kilb W (2012) Intact in vitro preparation of the neonatal rodent cerebral cortex-analysis of cellular properties and network activity. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 301–314

    Google Scholar 

  28. Chen Y, Balasubramanyan S, Lai AY, Todd KG, Smith PA (2009) Effects of sciatic nerve axotomy on excitatory synaptic transmission in rat substantia gelatinosa. J Neurophysiol 102:3203–3215

    Article  PubMed  Google Scholar 

  29. Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 82:981–1011

    PubMed  CAS  Google Scholar 

  30. Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23:1026–1040

    PubMed  CAS  Google Scholar 

  31. Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O’Connor KA, Verge GM, Chapman G, Green P, Foster AC, Naeve GS, Maier SF, Watkins LR (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20:2294–2302

    Article  PubMed  CAS  Google Scholar 

  32. Siao CJ, Tsirka SE (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22:3352–3358

    PubMed  CAS  Google Scholar 

  33. Eckert WA III, Willcockson HH, Light AR (2001) Interference of biocytin with opioid-evoked hyperpolarization and membrane properties of rat spinal substantia gelatinosa neurons. Neurosci Lett 297:117–120

    Article  PubMed  CAS  Google Scholar 

  34. Todd AJ, Lewis SG (1986) The morphology of Golgi-stained neurons in lamina II of the rat spinal cord. J Anat 149:113–119

    PubMed  CAS  Google Scholar 

  35. Grudt TJ, Perl ER (2002) Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 540:189–207

    Article  PubMed  CAS  Google Scholar 

  36. Todd AJ, McKenzie J (1989) GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 31:799–806

    Article  PubMed  CAS  Google Scholar 

  37. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  PubMed  CAS  Google Scholar 

  38. Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56:259–270

    Article  PubMed  Google Scholar 

  39. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  PubMed  CAS  Google Scholar 

  40. Ruangkittisakul A, Schwarzacher SW, Secchia L, Poon BY, Ma Y, Funk GD, Ballanyi K (2006) High sensitivity to neuromodulator-activated signaling pathways at physiological [K+] of confocally imaged respiratory center neurons in on-line-calibrated newborn rat brainstem slices. J Neurosci 26:11870–11880

    Article  PubMed  CAS  Google Scholar 

  41. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed  CAS  Google Scholar 

  42. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27:97–106

    Article  PubMed  CAS  Google Scholar 

  43. Perrier JF, Noraberg J, Simon M, Hounsgaard J (2000) Dedifferentiation of intrinsic response properties of motoneurons in organotypic cultures of the spinal cord of the adult turtle. Eur J Neurosci 12:2397–2404

    Article  PubMed  CAS  Google Scholar 

  44. Safronov BV, Wolff M, Vogel W (1997) Functional distribution of three types of Na+ channel on soma and processes of dorsal horn neurones of rat spinal cord. J Physiol 503: 371–385

    Article  PubMed  CAS  Google Scholar 

  45. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836

    Article  PubMed  CAS  Google Scholar 

  46. Hashizume H, De Leo JA, Colburn RW, Weinstein JN (2000) Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine 25:1206–1217

    Article  PubMed  CAS  Google Scholar 

  47. Lee J, Kim M, Back S, Uhm C, Hong S, Na H (2004) Activation of spinal microglia following peripheral nerve injury is related to the generation of mechanical allodynia in a rat model of neuropathic pain. Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience, Online 2004; Program No. 518.8

    Google Scholar 

  48. Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M (2006) Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11:223–230

    Article  PubMed  Google Scholar 

  49. Banfield MJ, Naylor RL, Robertson AG, Allen SJ, Dawbarn D, Brady RL (2001) Specificity in Trk receptor:neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure 9:1191–1199

    Article  PubMed  CAS  Google Scholar 

  50. Cho HJ, Kim JK, Zhou XF, Rush RA (1997) Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res 764:269–272

    Article  PubMed  CAS  Google Scholar 

  51. Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K (2001) Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci 21:4891–4900

    PubMed  CAS  Google Scholar 

  52. Pezet S, Cunningham J, Patel J, Grist J, Gavazzi I, Lever IJ, Malcangio M (2002) BDNF modulates sensory neuron synaptic activity by a facilitation of GABA transmission in the dorsal horn. Mol Cell Neurosci 21:51–62

    Article  PubMed  CAS  Google Scholar 

  53. Wilkemeyer MF, Smith KL, Zarei MM, Benke TA, Swann JW, Angelides KJ, Eisensmith RC (1996) Adenovirus-mediated gene transfer into dissociated and explant cultures of rat hippocampal neurons. J Neurosci Res 43: 161–174

    Article  PubMed  CAS  Google Scholar 

  54. Cho ES, Lee SY, Park JY, Hong SG, Ryu PD (2007) Organotypic slice culture of the hypothalamic paraventricular nucleus of rat. J Vet Sci 8:15–20

    Article  PubMed  Google Scholar 

  55. Wilkemeyer MF, Angelides KJ (1995) Adenovirus-mediated expression of a reporter gene in thalamocortical cocultures. Brain Res 703:129–138

    Article  PubMed  CAS  Google Scholar 

  56. Ruscheweyh R, Sandkühler J (2005) Long-range oscillatory Ca2+ waves in rat spinal dorsal horn. Eur J Neurosci 22:1967–1976

    Article  PubMed  Google Scholar 

  57. Asghar AU, Cilia La Corte PF, LeBeau FE, Al Dawoud M, Reilly SC, Bühl EH (2005) Whittington MA, King AE Oscillatory activity within rat substantia gelatinosa in vitro: a role for chemical and electrical neurotransmission. J Physiol 562:183–198

    Google Scholar 

  58. Labrakakis C, Lorenzo LE, Bories C, Ribeiro-da-Silva A, De Koninck Y (2009) Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn. Mol Pain 5:24

    Article  PubMed  Google Scholar 

  59. Bardoni R, Ghirri A, Zonta M, Betelli C, Vitale G, Ruggieri V, Sandrini M, Carmignoto G (2010) Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J Physiol 588:831–846

    Article  PubMed  CAS  Google Scholar 

  60. Ballanyi K, Panaitescu B, Ruangkittisakul A (2010) Control of breathing by “nerve glue”. Sci Signal 3:e41

    Article  Google Scholar 

  61. Huxtable AG, Zwicker JD, Alvares TS, Ruangkittisakul A, Fang X, Hahn LB, Posse de Chaves E, Baker GB, Ballanyi K, Funk GD (2010) Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J Neurosci 30:3947–3958

    Article  PubMed  CAS  Google Scholar 

  62. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  63. Akerboom J, Rivera JD, Guilbe MM, Malavé EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284: 6455–6464

    Article  PubMed  CAS  Google Scholar 

  64. Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3:e1796

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Canadian Institutes of Health Research, Alberta Heritage Foundation for Medical Research, Canadian Institutes for Innovation, Advanced Education Alberta and the Pfizer Canada Neuropathic Pain Research Awards Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Biggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Biggs, J.E. et al. (2012). Defined Medium Organotypic Cultures of Spinal Cord Put ‘Pain in a Dish’. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics