Skip to main content

The Study of Respiratory Chemoreflexes Using a Novel Dual-Perfused Rodent Preparation

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

Artificially perfused brainstem preparations have several advantages over both in vivo and superfused en bloc preparations for studying respiratory circuits. They allow the analysis of neuronal function without confounding influences of anesthesia and major peripheral feedback loops (chemoreceptor, vagal, and hormonal) while maintaining the brainstem in an oxygenated state and preserving many of the salient features of the normal respiratory motor pattern. Here we have summarized the development, characterization, and utility of a novel “dual-perfused preparation”: a vagotomized, decerebrate, in situ juvenile rat brainstem preparation in which central and peripheral chemoreceptors are perfused separately with defined media containing precisely controlled gas concentrations. This preparation has been instrumental in recent studies of time-dependent effects of chemoreflexes in response to intermittent chemostimuli as well as in demonstrating a hypoadditive interaction between central and peripheral chemoreceptors in the absence of cortical and vagal afferents (1–3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Day TA, Wilson RJA (2005) Specific carotid body chemostimulation is sufficient to elicit phrenic post-stimulus frequency decline in a novel in situ dual perfused rat preparation. Am J Physiol Reg Int Comp Physiol 289: R532–R544

    Article  CAS  Google Scholar 

  2. Day TA, Wilson RJA (2007) Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation. J Physiol 578:843–857

    Article  PubMed  CAS  Google Scholar 

  3. Day TA, Wilson RJA (2009) A negative interaction between central and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol 587:883–896

    Article  PubMed  CAS  Google Scholar 

  4. Suzue T (1984) Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 354:173–183

    PubMed  CAS  Google Scholar 

  5. Onimaru H, Arata A, Homma I (1987) Localization of respiratory rhythm-generating neurons in the medulla of brainstem-spinal cord preparations from newborn rats. Neurosci Lett 78:151–155

    Article  PubMed  CAS  Google Scholar 

  6. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  7. Brockhaus J, Ballanyi K, Smith JC, Richter DW (1993) Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats. J Physiol 462:421–445

    PubMed  CAS  Google Scholar 

  8. Okada Y, Mückenhoff K, Holtermann G, Acker H, Scheid P (1993) Depth profiles of pH and PO2 in the isolated brain stem-spinal cord of the neonatal rat. Respir Physiol 93:315–326

    Article  PubMed  CAS  Google Scholar 

  9. St.-John WM, Paton JFR (2000) Characterization of eupnea, apneusis and gasping in a perfused rat preparation. Respir Physiol 123:201–213

    Article  PubMed  CAS  Google Scholar 

  10. Ballanyi K, Onimaru H, Homma I (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Progr Neurobiol 59:583–634

    Article  CAS  Google Scholar 

  11. Ballanyi K (2004) Neuromodulation of the perinatal respiratory network. Curr Neuropharmacol 2:221–243

    Article  CAS  Google Scholar 

  12. Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL (2001) Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4:927–930

    Article  PubMed  CAS  Google Scholar 

  13. Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37:821–826

    Article  PubMed  CAS  Google Scholar 

  14. Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23:1478–1486

    PubMed  CAS  Google Scholar 

  15. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  16. Vasilakos K, Wilson RJ, Kimura N, Remmers JE (2005) Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats. J Neurobiol 62:369–385

    Article  PubMed  Google Scholar 

  17. Leusen IR (1954) Chemosensitivity of the respiratory center; influence of CO2 in the cerebral ventricles on respiration. Am J Physiol 176:39–44

    PubMed  CAS  Google Scholar 

  18. Fencl V, Miller TB, Pappenheimer JR (1966) Studies on the respiratory responses to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol 210:459–472

    PubMed  CAS  Google Scholar 

  19. Smith CA, Jameson LC, Mitchell GS, Musch TI, Dempsey JA (1984) Central-peripheral chemoreceptor interaction in awake cerebrospinal fluid-perfused goats. J Appl Physiol 56:1541–1549

    PubMed  CAS  Google Scholar 

  20. Busch MA, Bisgard GE, Forster HV (1985) Ventilatory acclimatization to hypoxia is not dependent on arterial hypoxemia. J Appl Physiol 58:1874–1880

    PubMed  CAS  Google Scholar 

  21. Smith CA, Saupe KW, Henderson KS, Dempsey JA (1995) Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. J Appl Physiol 79:689–699

    PubMed  CAS  Google Scholar 

  22. Berkenbosch A, Heeringa J, Olievier CN, Kruyt EW (1979) Artificial perfusion of the ponto-medullary region of cats. A method for separation of central and peripheral effects of chemical stimulation of ventilation. Respir Physiol 37:347–364

    Article  PubMed  CAS  Google Scholar 

  23. Richerson GB, Getting PA (1987) Maintenance of complex neural function during perfusion of the mammalian brain. Brain Res 409:128–132

    Article  PubMed  CAS  Google Scholar 

  24. Richerson GB, Getting PA (1990) Preservation of integrative function in a perfused guinea pig brain. Brain Res 517:7–18

    Article  PubMed  CAS  Google Scholar 

  25. Morin-Surun MP, Denavit-Saubie M (1989) Rhythmic discharges in the perfused isolated brainstem preparation of adult guinea pig. Neurosci Lett 101:57–61

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi F, Sinclair JD (1991) Respiratory patterns in anesthetized rats before and after anemic decerebration. Respir Physiol 84:61–76

    Article  PubMed  CAS  Google Scholar 

  27. Paton JF (1996) A working heart-brainstem preparation of the mouse. J Neurosci Methods 65:63–68

    Article  PubMed  CAS  Google Scholar 

  28. Dutschmann M, Wilson RJ, Paton JF (2000) Respiratory activity in neonatal rats. Auton Neurosci 84:19–29

    Article  PubMed  CAS  Google Scholar 

  29. St. Jacques R, St-John WM (2000) Sensitivities of eupnea and gasping to alterations in temperature of in vivo and perfused rat preparations. Respir Physiol 123:215–224

    Article  PubMed  CAS  Google Scholar 

  30. Harris MB, St.-John WM (2003) Tonic pulmonary stretch receptor feedback modulates both eupnea and gasping in an in situ rat preparation. Am J Physiol Regul Integr Comp Physiol 285:R215–R221

    PubMed  CAS  Google Scholar 

  31. Wilson RJ, Remmers JE, Paton JF (2001) Brain stem PO2 and pH of the working heart-brain stem preparation during vascular perfusion with aqueous medium. Am J Physiol Regul Integr Comp Physiol 281:R528–R538

    PubMed  CAS  Google Scholar 

  32. Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA (2006) Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100:13–19

    Article  PubMed  CAS  Google Scholar 

  33. Rodman JR, Curran AK, Henderson KS, Dempsey JA, Smith CA (2001) Carotid body denervation in dogs: eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol 91:328–335

    PubMed  CAS  Google Scholar 

  34. Lahiri S, DeLaney RG (1975) Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir Physiol 24:249–266

    Article  PubMed  CAS  Google Scholar 

  35. Harris MB, St.-John WM (2005) Phasic pulmonary stretch receptor feedback modulates both eupnea and gasping in an in situ rat preparation. Am J Physiol Regul Integr Comp Physiol 289:R450–R455

    Article  PubMed  CAS  Google Scholar 

  36. Bouckaert JJ, Heymans C (1933) Carotid sinus reflexes. Influence of central blood-pressure and blood supply on respiratory and ­vaso-motor centres. J Physiol 79:49–66

    PubMed  CAS  Google Scholar 

  37. Comroe JH (1939) The location and function of the chemoreceptors of the aorta. Am J Physiol 127:176–191

    CAS  Google Scholar 

  38. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  39. De Curtis M, Lilbrizzi L, Uva L, Gnatkovsky V (2012) Neuronal networks in the in vitro isolated guinea pig brain. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 357–383

    Google Scholar 

  40. Wyon N, Joensen H, Yamamoto Y, Lindahl SG, Eriksson LI (1998) Carotid body chemoreceptor function is impaired by vecuronium during hypoxia. Anesthesiology 89:1471–1479

    Article  PubMed  CAS  Google Scholar 

  41. Eldridge FL (1971) Relationship between phrenic nerve activity and ventilation. Am J Physiol 221:535–543

    PubMed  CAS  Google Scholar 

  42. Boden AG, Harris MC, Parkes MJ (1998) Apnoeic threshold for CO2 in the anaesthetized rat: fundamental properties under steady-state conditions. J Appl Physiol 85:898–907

    PubMed  CAS  Google Scholar 

  43. Dempsey JA, Skatrud JB (1986) A Sleep induced apnoeic threshold and its consequences. Am Rev Respir Dis 133:1163–1170

    PubMed  CAS  Google Scholar 

  44. Czapla MA, Zadina JE (2005) Reduced suppression of CO2-induced ventilatory stimulation by endomorphines relative to morphine. Brain Res 1059:159–166

    Article  PubMed  CAS  Google Scholar 

  45. Faber JE, Harris PD, Wiegman DL (1982) Anesthetic depression of microcirculation, central hemodynamics, and respiration in decerebrate rats. Am J Physiol 243: H837–H843

    PubMed  CAS  Google Scholar 

  46. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7:1360–1369

    Article  PubMed  CAS  Google Scholar 

  47. Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG (2006) Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. J Physiol 572:503–523

    Article  PubMed  CAS  Google Scholar 

  48. Mitchell GS (1990) Phrenic nerve responses to lung inflation and hypercapnia in decerebrate dogs. Pflüger’s Arch 416:580–585

    Article  CAS  Google Scholar 

  49. Nielsen AM, Bisgard GE, Mitchell GS (1986) Phrenic nerve responses to hypoxia and CO2 in decerebrate dogs. Respir Physiol 65:267–283

    Article  PubMed  CAS  Google Scholar 

  50. Moreira TS, Takakura AC, Colombari E, West GH, Guyenet PG (2007) Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors. J Physiol 580:285–300

    Article  PubMed  CAS  Google Scholar 

  51. Von Euler C (1983) On the central pattern generator for the basic breathing rhythmicity. J Appl Physiol 55:1647–1659

    Google Scholar 

  52. Zhou D, Huang Q, Fung M-L, Li A, Darnall RA, Nattie EE, St.-John WM (1996) Phrenic response to hypercapnia in the unanesthetised, decerebrate, newborn rat. Respir Physiol 104:1–22

    Article  Google Scholar 

  53. Wang W, Fung ML, Darnall RA, St. John WM (1996) Characterizations and comparisons of eupnoea and gasping in neonatal rats. J Physiol 490:277–292

    PubMed  CAS  Google Scholar 

  54. Kinkead R, Filmyer WG, Mitchell GS, Milsom WK (1994) Vagal input enhances responsiveness of respiratory discharge to central changes in pH/CO2 in bullfrogs. J Appl Physiol 77:2048–2051

    PubMed  CAS  Google Scholar 

  55. Maskrey M (1990) Body temperature effects on hypoxic and hypercapnic responses in awake rats. Am J Physiol 259:R492–R498

    PubMed  CAS  Google Scholar 

  56. Kaila K, Ransom BR (1998) Concept of pH and its importance in neurobiology. Chapter 1. In: Kaila K, Ransom BR (eds) pH and brain function. Wiley-Liss, New York, pp 3–10

    Google Scholar 

  57. Nattie E (1999) CO2 brainstem chemoreceptors and breathing. Prog Neurobiol 59: 299–331

    Article  PubMed  CAS  Google Scholar 

  58. Steinback CD, Poulin MJ (2008) Cardiovascular and cerebrovascular responses to acute isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol 104:482–489

    Article  PubMed  Google Scholar 

  59. Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296: R1473–R1495

    Article  PubMed  CAS  Google Scholar 

  60. Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM (1976) Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ Res 38:20–25

    Article  PubMed  CAS  Google Scholar 

  61. Miyabe M, Jones MD, Koehler RC, Traystman RJ (1989) Chemodenervation does not alter cerebrovascular response to hypoxic hypoxia. Am J Physiol 257:H1413–H1418

    PubMed  CAS  Google Scholar 

  62. Vatner SF, Priano LL, Rutherford JD, Manders WT (1980) Sympathetic regulation of the cerebral circulation by the carotid chemoreceptor reflex. Am J Physiol 238: H594–H598

    PubMed  CAS  Google Scholar 

  63. Anwar M, Kissen I, Weiss HR (1990) Effect of chemodenervation on the cerebral vascular and microvascular response to hypoxia. Circ Res 67:1365–1373

    Article  PubMed  CAS  Google Scholar 

  64. Prabhakar NR, Dick TE, Nanduri J, Kumar GK (2007) Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol 92:39–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CIHR and AIHS (RJAW) and CIHR and MRU Internal Grants Fund (TAD). Development of the DPP was made possible by the generosity of Dr. Julian Paton who taught us the WHBP on which the DPP was based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Day, T.A., Wilson, R.J.A. (2012). The Study of Respiratory Chemoreflexes Using a Novel Dual-Perfused Rodent Preparation. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics