Skip to main content

Neuronal Networks in the In Vitro Isolated Guinea Pig Brain

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

Neuronal networks can be properly analyzed in experimental preparations that preserve the largest ­connectivity within and between brain structures. The isolated whole guinea pig brain maintained in vitro by arterial perfusion is ideal for this purpose. The methods and techniques utilized to study brain networks in this preparation are reviewed in this chapter. The advantages, potentials, and limitations for the study of pathological activity in models of acute (and chronic) cerebral diseases, such as epilepsy and ischemia, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4AP:

4-aminopyridine

BBB:

Blood-brain barrier

CSD:

Current source density

CNS:

Central nervous system

EC:

Entorhinal cortex

IPSP:

Inhibitory postsynaptic potentials

ID:

Ischemic depolarizations

LOT:

Lateral olfactory tract

MCA:

Medial cerebral artery

OB:

Olfactory bulb

PID:

Peri-infarctual depression

PRC:

Perirhinal cortex

PC:

Piriform cortex

VSD:

Voltage-sensitive dye

References

  1. Llinás R, Yarom Y, Sugimori M (1981) Isolated mammalian brain in vitro: new technique for analysis of electrical activity of neuronal circuit function. Fed Proc 40:2240–2245

    PubMed  Google Scholar 

  2. de Curtis M, Biella G, Buccellati C, Folco G (1998) Simultaneous investigation of the neuronal and vascular compartments in the guinea pig brain isolated in vitro. Brain Res Protoc 3:221–228

    Article  Google Scholar 

  3. Mühlethaler M, de Curtis M, Walton K, Llinas R (1993) The isolated and perfused brain of the guinea-pig in vitro. Eur J Neurosci 5:915–926

    Article  PubMed  Google Scholar 

  4. de Curtis M, Pare D, Llinas RR (1991) Electrophysiology of the olfactory-hippocampal circuit in the isolated and perfused adult mammalian brain in vitro. Hippocampus 1:341–354

    Article  PubMed  Google Scholar 

  5. Llinas R, Mühlethaler M (1988) An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig. J Physiol 404:215–240

    PubMed  CAS  Google Scholar 

  6. Luparello TJ (ed) (1967) Stereotaxic atlas of the forebrain of the guinea pig. Krager, Basel

    Google Scholar 

  7. Librizzi L, Janigro D, De Biasi S, de Curtis M (2001) Blood brain barrier preservation in the in vitro isolated guinea -pig rain preparation. J Neurosci Res 66:289–297

    Article  PubMed  CAS  Google Scholar 

  8. Mazzetti S, Librizzi L, Frigerio S, de Curtis M, Vitellaro-Zuccarello L (2004) Molecular anatomy of cerebral microvessels in the isolated guinea-pig brain. Brain Res 999:81–90

    Article  PubMed  CAS  Google Scholar 

  9. Librizzi L, Biella G, Cimino C, de Curtis M (1999) Arterial supply of limbic structures in the guinea pig. J Comp Neurol 411:674–682

    Article  PubMed  CAS  Google Scholar 

  10. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  11. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  12. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  13. Librizzi L, de Curtis M (2003) Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex. Ann Neurol 53:382–389

    Article  PubMed  Google Scholar 

  14. Uva L, Librizzi L, Wendling F, de Curtis M (2005) Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain. Epilepsia 46:1914–1925

    Article  PubMed  Google Scholar 

  15. Uva L, Librizzi L, Marchi N, Noe F, Bongiovanni R, Vezzani A, Janigro D, de Curtis M (2008) Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood-brain barrier permeability. Neuroscience 151:303–312

    Article  PubMed  CAS  Google Scholar 

  16. Uva L, Avoli M, de Curtis M (2009) Synchronous GABA-receptor-dependent potentials in limbic areas of the in-vitro isolated adult guinea pig brain. Eur J Neurosci 29:911–920

    Article  PubMed  Google Scholar 

  17. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    PubMed  CAS  Google Scholar 

  18. Freeman WJ, Skarda CA (1985) Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res 357:147–175

    PubMed  CAS  Google Scholar 

  19. Kuhlmann CR, Librizzi L, Closhen D, Pflanzner T, Lessmann V, Pietrzik CU, de Curtis M, Luhmann HJ (2009) Mechanisms of C-reactive protein-induced blood-brain barrier disruption. Stroke 40:1458–1466

    Article  PubMed  CAS  Google Scholar 

  20. Pastori C, Librizzi L, Breschi GL, Regondi C, Frassoni C, Panzica F, Frigerio S, Gelati M, Parati E, De Simoni MG, de Curtis M (2008) Arterially perfused neurosphere-derived cells distribute outside the ischemic core in a model of transient focal ischemia and reperfusion in vitro. PLoS One 3:e2754

    Article  PubMed  Google Scholar 

  21. Broicher T, Speckmann EJ (2012) Living human brain slices: network analysis using voltage sensitive dyes. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 285–300

    Google Scholar 

  22. de Curtis M, Takashima I, Iijima T (1999) Optical imaging of cortical activity after in vitro perfusion of cerebral arteries with a voltage-sensitive dye. Brain Res 837:314–319

    Article  PubMed  Google Scholar 

  23. Gnatkovsky V, de Curtis M (2006) Hippocampus-mediated activation of superficial and deep layer neurons in the medial entorhinal cortex of the isolated guinea pig brain. J Neurosci 26:873–881

    Article  PubMed  CAS  Google Scholar 

  24. Carriero G, Uva L, Gnatkovsky V, de Curtis M (2009) Distribution of the olfactory fibre input into the olfactory tubercle of the in vitro isolated guinea pig brain. J Neurophysiol 101: 1613–1619

    Article  PubMed  Google Scholar 

  25. Fellin T, Gomez-Gonzalo M, Gobbo S, Carmignoto G, Haydon PG (2006) Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 26:9312–9322

    Article  PubMed  CAS  Google Scholar 

  26. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K (2012) Spontaneous neural network oscillations in hippocampus, cortex and locus coeruleus of newborn rat and piglet brain slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  27. Ratto GM, Brondi M, Carmignoto G, de Curtis M, Solis-Satu S, Uva L (2008) A window with a view: structure and function in the cortex seen through the two photon microscope. Abstract V meeting molecular mechanism neuroscience, Milan

    Google Scholar 

  28. Biella G, de Curtis M (1995) Associative synaptic potentials in the piriform cortex of the isolated guinea-pig brain in vitro. Eur J Neurosci 7:54–64

    Article  PubMed  CAS  Google Scholar 

  29. Forti M, Biella G, Caccia S, de Curtis M (1997) Persistent excitability changes in the piriform cortex of the isolated guinea-pig brain after transient exposure to bicuculline. Eur J Neurosci 9:435–451

    Article  PubMed  CAS  Google Scholar 

  30. Biella G, Uva L, de Curtis M (2001) Network activity evoked by neocortical stimulation in area 36 of the guinea pig perirhinal cortex. J Neurophysiol 86:164–172

    PubMed  CAS  Google Scholar 

  31. Mühlethaler M, Serafin M (1990) Thalamic spindles in an isolated and perfused preparation. Brain Res 524:17–21

    Article  PubMed  Google Scholar 

  32. Llinas R, Mühlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    PubMed  CAS  Google Scholar 

  33. Uva L, Strowbridge BW, de Curtis M (2006) Olfactory bulb networks revealed by lateral olfactory tract stimulation in the in vitro isolated guinea-pig brain. Neuroscience 142:567–577

    Article  PubMed  CAS  Google Scholar 

  34. Biella G, Panzica F, de Curtis M (1996) Interactions between associative synaptic potentials in the piriform cortex of the in vitro isolated guinea pig brain. Eur J Neurosci 8:1350–1357

    Article  PubMed  CAS  Google Scholar 

  35. Biella G, de Curtis M (2000) Olfactory inputs activate the medial entorhinal cortex via the hippocampus. J Neurophysiol 83:1924–1931

    PubMed  CAS  Google Scholar 

  36. Biella G, Uva L, de Curtis M (2002) Propagation of neuronal activity along the neocortical-perirhinal-entorhinal pathway in the guinea pig. J Neurosci 22:9972–9979

    PubMed  CAS  Google Scholar 

  37. Shepherd GM (1972) Synaptic organization of the mammalian olfactory bulb. Physiol Rev 52:864–917

    PubMed  CAS  Google Scholar 

  38. Shipley MT, Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30:123–176

    Article  PubMed  CAS  Google Scholar 

  39. Phillips CG, Powell TP, Shepherd GM (1963) Responses of mitral cells to stimulation of the lateral olfactory tract in the rabbit. J Physiol 168:65–88

    PubMed  CAS  Google Scholar 

  40. Haberly LB, Bower JM (1984) Analysis of association fiber system in piriform cortex with intracellular recording and staining techniques. J Neurophysiol 51:90–112

    PubMed  CAS  Google Scholar 

  41. Haberly L, Behan M (1983) Structure of the piriform cortex of the opossum. III. Ultrastructural characterization of synaptic terminals of association and olfactory bulb afferent fibers. J Comp Neurol 219:448–460

    Article  PubMed  CAS  Google Scholar 

  42. Haberly LB, Presto S (1986) Ultrastructural analysis of synaptic relationships of intracellularly stained pyramidal cell axons in piriform cortex. J Comp Neurol 248:464–474

    Article  PubMed  CAS  Google Scholar 

  43. Ketchum KL, Haberly LB (1993) Synaptic events that generate fast oscillations in piriform cortex. J Neurosci 13:3980–3985

    PubMed  CAS  Google Scholar 

  44. Takagi SF (1984) The olfactory nervous system of the old world monkey. Jpn J Physiol 34:561–573

    Article  PubMed  CAS  Google Scholar 

  45. Cattarelli M (1989) Selective olfactory pathway lesions differentially affect runway behavior of the rat. Physiol Behav 46:393–396

    Article  PubMed  CAS  Google Scholar 

  46. Ketchum KL, Haberly LB (1993) Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. I. Current source-density analysis. J Neurophysiol 69:248–260

    PubMed  CAS  Google Scholar 

  47. Biella G, Forti M, de Curtis M (1996) Propagation of epileptiform potentials in the guinea-pig piriform cortex is sustained by associative fibres. Epilepsy Res 24:137–146

    Article  PubMed  CAS  Google Scholar 

  48. Biella GR, Gnatkovsky V, Takashima I, Kajiwara R, Iijima T, de Curtis M (2003) Olfactory input to the parahippocampal region of the isolated guinea pig brain reveals weak entorhinal-to-perirhinal interactions. Eur J Neurosci 18:95–101

    Article  PubMed  CAS  Google Scholar 

  49. Sewards TV, Sewards MA (2003) Input and output stations of the entorhinal cortex: superficial vs. deep layers or lateral vs. medial divisions? Brain Res Rev 42:243–251

    Article  PubMed  Google Scholar 

  50. Uva L, de Curtis M (2005) Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus. Neuroscience 130:249–258

    Article  PubMed  CAS  Google Scholar 

  51. Gnatkovsky V, Wendling F, de Curtis M (2007) Cellular correlates of spontaneous periodic events in the medial entorhinal cortex of the in vitro isolated guinea pig brain. Eur J Neurosci 26:302–311

    Article  PubMed  Google Scholar 

  52. Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    Article  PubMed  CAS  Google Scholar 

  53. Squire LR, Wixted JT, Clark RE (2007) Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci 8:872–883

    Article  PubMed  CAS  Google Scholar 

  54. Braak H, Braak E (1993) Entorhinal-hippocampal interaction in mnestic disorders. Hippocampus 3:239–246

    Article  PubMed  Google Scholar 

  55. de Curtis M, Pare D (2004) The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog Neurobiol 74:101–110

    Article  PubMed  Google Scholar 

  56. Martina M, Royer S, Paré D (2001) Propagation of neocortical inputs in the perirhinal cortex. J Neurosci 21:2878–2888

    PubMed  CAS  Google Scholar 

  57. Pelletier JG, Apergis J, Pare D (2004) Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. J Neurophysiol 91:2079–2089

    Article  PubMed  Google Scholar 

  58. Kajiwara R, Takashima I, Mimura Y, Iijima T (2003) Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. J Neurophysiol l89:2176–2184

    Google Scholar 

  59. Witter MP, Wouterlood FG, Naber PA, Van Haeften T (2000) Anatomical organization of the parahippocampal-hippocampal network. Ann NY Acad Sci 911:1–24

    Article  PubMed  CAS  Google Scholar 

  60. Burwell R (2000) The parahippocampal region: corticocortical interconnectivity. In: Scharfman HE, Witter MP, Schwarcz R (eds) The parahippocampal region, vol 2. New York Academy of Science, New York, pp 25–42

    Google Scholar 

  61. de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63:541–567

    Article  PubMed  Google Scholar 

  62. Gnatkovsky V, Librizzi L, Trombin F, de Curtis M (2008) Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 64:674–686

    Article  PubMed  Google Scholar 

  63. de Curtis M, Gnatkovsky V (2009) Re-evaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia 7:1–12

    Google Scholar 

  64. Pare D, de Curtis M, Llinas R (1992) Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro. J Neurosci 12:1867–1881

    PubMed  CAS  Google Scholar 

  65. de Curtis M, Llinas RR (1993) Entorhinal cortex long-term potentiation evoked by theta-patterned stimulation of associative fibers in the isolated in vitro guinea pig brain. Brain Res 600:327–330

    Article  PubMed  Google Scholar 

  66. de Curtis M, Biella G, Forti M, Panzica F (1994) Multifocal spontaneous epileptic activity induced by restricted bicuculline ejection in the piriform cortex of the isolated guinea pig brain. J Neurophysiol 71:2463–2475

    PubMed  Google Scholar 

  67. de Curtis M, Radici C, Forti M (1999) Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis. Neuroscience 88:107–117

    Article  PubMed  Google Scholar 

  68. de Curtis M, Biella G, Forti M (1996) Epileptiform activity in the piriform cortex of the in vitro isolated guinea pig brain preparation. Epilepsy Res 26:75–80

    Article  PubMed  Google Scholar 

  69. de Curtis M, Manfridi A, Biella G (1998) Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J Neurosci 18:7543–7551

    PubMed  Google Scholar 

  70. Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernandez N, van Boxel-Dezaire A, Najim I, Janigro D (2007) In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 48:1934–1946

    Article  PubMed  CAS  Google Scholar 

  71. Michelson HB, Wong RK (1994) Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J Physiol 477:35–45

    PubMed  Google Scholar 

  72. Avoli M, Barbarosie M, Lücke A, Nagao T, Lopantsev V, Köhling R (1996) Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci 16:3912–3924

    PubMed  CAS  Google Scholar 

  73. Lopantsev V, Avoli M (1998) Participation of GABAA-mediated inhibition in ictallike discharges in the rat entorhinal cortex. J Neurophysiol 79:352–360

    PubMed  CAS  Google Scholar 

  74. Barolet AW, Morris ME (1991) Changes in extracellular K+ evoked by GABA, THIP and baclofen in the guinea-pig hippocampal slice. Exp Brain Res 84:591–598

    Article  PubMed  CAS  Google Scholar 

  75. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  76. Zonta M, Carmignoto G (2002) Calcium oscillations encoding neuron-to-astrocyte communication. J Physiol Paris 9:193–198

    Article  Google Scholar 

  77. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  78. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  79. Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24:6920–6927

    Article  PubMed  CAS  Google Scholar 

  80. Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    Article  PubMed  CAS  Google Scholar 

  81. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  PubMed  CAS  Google Scholar 

  82. Gomez-Gonzalo M, Zonta M, Losi G, Chiavegato A, Brondi M, Vetri F, Uva L, Pozzan T, de Curtis M, Ratto GM, Carmignoto G (2010) A recurrent excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 8:1–19

    Article  Google Scholar 

  83. Pastori C, Regondi MC, Librizzi L, de Curtis M (2007) Early excitability changes in a novel acute model of transient focal ischemia and reperfusion in the in vitro isolated guinea pig brain. Exp Neurol 204:95–105

    Article  PubMed  CAS  Google Scholar 

  84. Breschi GL, Librizzi L, Pastori C, Zucca I, Cattalini A, Regondi MC, de Curtis M (2010) Functional and structural correlates of MRI patterns in a model of focal cerebral ischemia in vitro. Neurobiol Dis 39:181–191

    Article  PubMed  Google Scholar 

  85. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81: 1065–1096

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Experiments described in this chapter are the result of ∼20 years of research sponsored by the Italian Health Ministry and by grants of the Human Frontiers Science Program Organization, the Mariani Foundation, the CARIPLO Foundation, and the European Community (VSAMUEL and EPICURE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco de Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Curtis, M., Librizzi, L., Uva, L., Gnatkovsky, V. (2012). Neuronal Networks in the In Vitro Isolated Guinea Pig Brain. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics