Skip to main content

Spontaneous Neural Network Oscillations in Hippocampus, Cortex, and Locus Coeruleus of Newborn Rat and Piglet Brain Slices

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Abstract

Rises of cytosolic Ca2+ (Cai) associated with early network oscillations (ENOs) are important for brain maturation. Thus, developing neural networks are often studied by combining Cai imaging with electrophysiological recording of extracellular activity and/or intracellular “patch-clamp” analysis. At birth, some nervous systems such as medullary respiratory networks are functional while cortical circuits are yet quite immature. Here, we summarize our experimental approaches to investigate how both mature and developing neuron-glia networks in newborns generate spontaneous synchronized bursting and how such activity is modulated by (pharmacological) experimental manipulation mimicking neurological diseases or their treatment. For this, we studied ENOs in cortex and hippocampus of newborn rat and piglet brain slices, whereas ENO-like bursting in locus coeruleus was only analyzed in rat slices. All these activities are stable for several hours in superfusate of close-to-physiological ion content. Similar to isolated inspiratory network bursting, ENOs depend on a “Ca2+/K+ antagonism” meaning that depressed bursting in elevated superfusate Ca2+ is countered by raised K+. As further example for our findings, anoxia abolishes ENOs and bursting in locus coeruleus, whereas μ-opioid receptor activation blocks bursting, transforms burst pattern, or has no clear effect in locus coeruleus, hippocampus, and cortex, respectively. Multiphoton Cai imaging reveals different responses to neuromodulators in neurons versus neighboring astrocytic glia which forms the basis for their further discrimination via morphological fluorescence imaging of sulforhodamine-101 or glial acidic fibrillary protein. Our findings indicate that “electrophysiological imaging” in brain slices from neonatal mammals is a potent tool for studying spontaneously active (developing) central neuron-glia networks.

Chase Kantor and Bodgan Panaitescu contributed equally to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712

    Article  PubMed  CAS  Google Scholar 

  2. Khazipov R, Luhmann HJ (2006) Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 29:414–418

    Article  PubMed  CAS  Google Scholar 

  3. O’Donovan MJ, Bonnot A, Mentis GZ, Arai Y, Chub N, Shneider NA, Wenner P (2008) Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Dev Neurobiol 68:788–803

    Article  PubMed  Google Scholar 

  4. Allene C, Cossart R (2010) Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol 588:83–91

    Article  PubMed  CAS  Google Scholar 

  5. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255

    Article  PubMed  CAS  Google Scholar 

  6. Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3:452–459

    Article  PubMed  CAS  Google Scholar 

  7. Yuste R, Konnerth A, Masters B (2006) Imaging in neuroscience and development, a laboratory manual. J Biomed Opt 11:19902

    Article  Google Scholar 

  8. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  PubMed  CAS  Google Scholar 

  9. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    PubMed  CAS  Google Scholar 

  10. Ballanyi K, Panaitescu B, Ruangkittisakul A (2010) Control of breathing by nerve glue. Sci Sig 3: pe41

    Google Scholar 

  11. Metzger F, Klapproth N, Kulik A, Sendtner M, Ballanyi K (2005) Optical assessment of motoneuron function in a ‘twenty-four-hour’ acute spinal cord slice model from fetal rats. J Neurosci Methods 141:309–320

    Article  PubMed  Google Scholar 

  12. Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K (2005) Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 25:5280–5289

    Article  PubMed  Google Scholar 

  13. Sipilä ST, Huttu K, Voipio J, Kaila K (2006) Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+ -activated K+ current. Eur J Neurosci 23:2330–2338

    Article  PubMed  Google Scholar 

  14. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284

    Article  PubMed  CAS  Google Scholar 

  15. Sipilä ST, Kaila K (2008) GABAergic control of CA3-driven network events in the developing hippocampus. Results Probl Cell Differ 44:99–121

    Article  PubMed  Google Scholar 

  16. Kafitz KW, Meier SD, Stephan J, Rose CR (2008) Developmental profile and properties of sulforhodamine 101-Labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods 169:84–92

    Article  PubMed  CAS  Google Scholar 

  17. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424

    Article  PubMed  CAS  Google Scholar 

  18. Ballanyi K (2004) Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol 207:3201–3212

    Article  PubMed  CAS  Google Scholar 

  19. Ballanyi K (2004) Neuromodulation of the perinatal respiratory network. Curr Neurophar- macol 2:221–243

    Article  CAS  Google Scholar 

  20. Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242

    Article  PubMed  CAS  Google Scholar 

  21. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416:303–325

    PubMed  CAS  Google Scholar 

  22. Ballanyi K, Ruangkittisakul A (2009) Structure-function analysis of rhythmogenic inspiratory pre-Botzinger complex networks in ‘calibrated’ newborn rat brainstem slices. Respir Physiol Neurobiol 168:158–178

    Article  PubMed  Google Scholar 

  23. Ruangkittisakul A, Ballanyi K (2010) Methylxanthine reversal of opioid-evoked inspiratory depression via phosphodiesterase-4 blockade. Respir Physiol Neurobiol 172:94–105

    Article  PubMed  CAS  Google Scholar 

  24. Lombroso CT (2007) Neonatal seizures: gaps between the laboratory and the clinic. Epilepsia 48:83–106

    Article  PubMed  Google Scholar 

  25. Ballanyi K, Onimaru H, Homma I (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 59:583–634

    Article  PubMed  CAS  Google Scholar 

  26. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  27. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Anatomically ‘calibrated‘ isolated respiratory networks from newborn rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  28. Ballanyi K, Ruangkittisakul A, Onimaru H (2009) Opioids increase and anoxia decreases delay of rhythmogenic pre-inspiratory (pFRG) and inspiratory (preBötC) network bursts in newborn rat brainstems. Eur J Physiol (Pflüger’s Archives) 458:571–587

    Article  CAS  Google Scholar 

  29. Panaitescu B, Ruangkittisakul A, Ballanyi K (2009) Silencing by raised extracellular Ca2+ of pre-Bötzinger complex neurons in newborn rat brainstem slices without change of membrane potential or input resistance. Neurosci Lett 456:25–29

    Article  PubMed  CAS  Google Scholar 

  30. Ruangkittisakul A, Secchia L, Bornes TD, Palathinkal DM, Ballanyi K (2007) Dependence on extracellular Ca2+/K+ antagonism of inspiratory centre rhythms in slices and en bloc preparations of newborn rat brainstem. J Physiol 584:489–508

    Article  PubMed  CAS  Google Scholar 

  31. Ruangkittisakul A, Panaitescu B, Ballanyi K (2011) K+ and Ca2+ dependence of inspiratory-related rhythm in novel “calibrated” mouse brainstem slices. Respir Physiol Neurobiol 175:37–48

    Article  PubMed  CAS  Google Scholar 

  32. Ballanyi K, Grafe P (1985) An intracellular analysis of γ-aminobutyric-acid-associated ion movements in rat sympathetic neurones. J Physiol 365:41–58

    PubMed  CAS  Google Scholar 

  33. Kulik A, Nishimaru H, Ballanyi K (2000) Role of bicarbonate and chloride in GABA- and glycine-induced depolarization and [Ca2+]i rise in fetal rat motoneurons in situ. J Neurosci 20:7905–7913

    PubMed  CAS  Google Scholar 

  34. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    Article  PubMed  CAS  Google Scholar 

  35. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052

    Article  PubMed  CAS  Google Scholar 

  36. Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R (2007) Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex 17:1582–1594

    Article  PubMed  Google Scholar 

  37. Brockmann MD, Pöschel B, Cichon C, Hanganu-Opatz IL (2011) Coupled oscillations mediate directed interactions between prefrontal cortex and hippocampus of the neonatal rat. Neuron 71:332–347

    Article  PubMed  CAS  Google Scholar 

  38. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  PubMed  CAS  Google Scholar 

  39. Van Bockstaele EJ, Reyes BA, Valentino RJ (2010) The locus coeruleus: a key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 1314:162–174

    Article  PubMed  Google Scholar 

  40. Christie MJ, Williams JT, North RA (1989) Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J Neurosci 9:3584–3589

    PubMed  CAS  Google Scholar 

  41. Ballantyne D, Andrzejewski M, Mückenhoff K, Scheid P (2004) Rhythms, synchrony and electrical coupling in the locus coeruleus. Respir Physiol Neurobiol 143:199–214

    Article  PubMed  CAS  Google Scholar 

  42. Nakamura S, Kimura F, Sakaguchi T (1987) Postnatal development of electrical activity in the locus coeruleus. J Neurophysiol 58:510–524

    PubMed  CAS  Google Scholar 

  43. Ocaña M, Cendán CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 500:203–219

    Article  PubMed  Google Scholar 

  44. Felten DL, Hakan H, Jonsson G (1982) Evidence for a neurotrophic role of noradrenaline neurons in the postnatal development of rat cerebral cortex. J Neurocytol 11:119–135

    Article  PubMed  CAS  Google Scholar 

  45. Moriceau S, Roth TL, Sullivan RM (2010) Rodent model of infant attachment learning and stress. Dev Psychobiol 52:651–660

    Article  PubMed  CAS  Google Scholar 

  46. Jefferys JG (1994) Experimental neurobiology of epilepsies. Curr Opin Neurol 7:113–122

    Article  PubMed  CAS  Google Scholar 

  47. Keifer J, Vyas D, Houk JC (1992) Sulforhodamine labeling of neural circuits engaged in motor pattern generation in the in vitro turtle brainstem-cerebellum. J Neurosci 12:3187–3199

    PubMed  CAS  Google Scholar 

  48. Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  PubMed  CAS  Google Scholar 

  49. Mandal R, Anderson CW (2009) Anatomical organization of brainstem circuits mediating feeding motor programs in the marine toad. Bufo marinus Brain Res 1298:99–110

    CAS  Google Scholar 

  50. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  51. Jantzie LL, Cheung PY, Johnson ST, Bigam DL, Todd KG (2010) Cerebral amino acid profiles after hypoxia-reoxygenation and N-acetylcysteine treatment in the newborn piglet. Neonatology 97:195–203

    Article  PubMed  CAS  Google Scholar 

  52. Ballanyi K (1999) Isolated tissues: in vitro preparations. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Heidelberg, p 307

    Chapter  Google Scholar 

  53. Neher E, Sakmann B (2009) Single-channel recording, 2nd edn. Springer, New York/Dordrecht/Heidelberg/London

    Google Scholar 

  54. Walz W (2009) Patch-clamp analysis: advanced techniques, 2nd edn. Humana, Totowa/New Jersey

    Google Scholar 

  55. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  56. Ruangkittisakul A, Schwarzacher SW, Secchia L, Poon BY, Ma Y, Funk GD, Ballanyi K (2006) High sensitivity to neuromodulator-activated signaling pathways at physiological [K+] of confocally imaged respiratory center neurons in on-line-calibrated newborn rat brainstem slices. J Neurosci 26:11870–11880

    Article  PubMed  CAS  Google Scholar 

  57. Ruangkittisakul A, Schwarzacher SW, Secchia L, Ma Y, Bobocea N, Poon BY, Funk GD, Ballanyi K (2008) Generation of eupnea and sighs by a spatiochemically organized inspiratory network. J Neurosci 28:2447–2458

    Article  PubMed  CAS  Google Scholar 

  58. Ballanyi K, Ruangkittisakul A (2009) Brain slices. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Heidelberg/New York/Tokyo, pp 483–490

    Chapter  Google Scholar 

  59. Fish KN, Gonzales-Burgos G, Zaitsev AV, Lewis DA (2012) Histological characterization of physiologically determined fast spiking interneurons in slices of the primate dorsolateral prefrontal cortex. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 159–181

    Google Scholar 

  60. Nakamura TJ, Michel S, Block GD, Colwell CS (2012) Neural circuits underlying circadian oscillations in mammals: clocks in a dish. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 183–210

    Google Scholar 

  61. Broicher T, Speckmann EJ (2012) Living human brain slices: network analysis using voltage sensitive dyes. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 285–300

    Google Scholar 

  62. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  63. Ruangkittisakul A, Ballanyi K (2009) Neuron-glia-imaging. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Heidelberg/New York/Tokyo, pp 2756–2764

    Chapter  Google Scholar 

  64. Ruangkittisakul A, Okada Y, Oku Y, Koshiya N, Ballanyi K (2009) Fluorescence imaging of active respiratory networks. Respir Physiol Neurobiol 168:26–38

    Article  PubMed  Google Scholar 

  65. Lingwood BE, Healy GN, Sullivan SM, Pow DV, Colditz PB (2008) MAP2 provides reliable early assessment of neural injury in the newborn piglet model of birth asphyxia. J Neurosci Methods 171:140–146

    Article  PubMed  CAS  Google Scholar 

  66. Craner SL, Ray RH (1991) Somatosensory cortex of the neonatal pig: I. Topographic organization of the primary somatosensory cortex (SI). J Comp Neurol 306:24–38

    Article  PubMed  CAS  Google Scholar 

  67. Kang J, Kang N, Yu Y, Zhang J, Petersen N, Tian GF, Nedergaard M (2010) Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons. Neuroscience 169:1601–1609

    Article  PubMed  CAS  Google Scholar 

  68. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751

    Article  PubMed  CAS  Google Scholar 

  69. Martin LJ, Brambrink A, Koehler RC, Traystman RJ (1997) Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxic-ischemia. J Comp Neurol 377:262–285

    Article  PubMed  CAS  Google Scholar 

  70. Teppema LJ, Baby S (2011) Anesthetics and control of breathing. Respir Physiol Neurobiol 177:80–92

    Article  PubMed  CAS  Google Scholar 

  71. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  72. De Curtis M, Lilbrizzi L, Uva L, Gnatkovsky V (2012) Neuronal networks in the in vitro isolated guinea pig brain. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 357–383

    Google Scholar 

  73. Safiulina VF, Kasyanov AM, Giniatullin R, Cherubini E (2005) Adenosine down-regulates giant depolarizing potentials in the developing rat hippocampus by exerting a negative control on glutamatergic inputs. J Neurophysiol 94:2797–2804

    Article  PubMed  CAS  Google Scholar 

  74. Ruusuvuori E, Kirilkin I, Pandya N, Kaila K (2010) Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism. J Neurosci 30:15638–15642

    Article  PubMed  CAS  Google Scholar 

  75. Tyzio R, Allene C, Nardou R, Picardo MA, Yamamoto S, Sivakumaran S, Caiati MD, Rheims S, Minlebaev M, Milh M, Ferré P, Khazipov R, Romette JL, Lorquin J, Cossart R, Khalilov I, Nehlig A, Cherubini E, Ben-Ari Y (2011) Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate. J Neurosci 31:34–45

    Article  PubMed  CAS  Google Scholar 

  76. Zilberter Y, Zilberter T, Bregestovski P (2010) Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis. Trends Pharmacol Sci 31:394–401

    Article  PubMed  CAS  Google Scholar 

  77. Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuro­scientist 8:254–267

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work contributing to this study was supported by the Alberta Heritage Foundation for Medical Research (AHFMR), Alberta Innovates Health Solutions (AIHS), Hotchkiss Brain Institute, the Canada Foundation for Innovation (CFI-ASRIP), and operating plus training grants from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ballanyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kantor, C. et al. (2012). Spontaneous Neural Network Oscillations in Hippocampus, Cortex, and Locus Coeruleus of Newborn Rat and Piglet Brain Slices. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics