Skip to main content

Intact In Vitro Preparations of the Neonatal Rodent Cortex: Analysis of Cellular Properties and Network Activity

  • Protocol
  • First Online:
Isolated Central Nervous System Circuits

Part of the book series: Neuromethods ((NM,volume 73))

Abstract

In vitro preparations of one whole hippocampus or one entire neocortical hemisphere (so-called intact preparations) combine the technical possibilities of conventional in vitro slice preparations with the advantage of a preserved intrinsic connectivity of a defined brain region. The initiation and propagation of spontaneous or experimentally induced network activity can be studied with various electrophysiological techniques from the single cell level to large neuronal networks. The good control of the extracellular milieu allows in-depth neuropharmacological analyses on the molecular and cellular mechanisms underlying physiological or pathophysiological network activity. This chapter aims to give an overview on the prospects and limitations of intact in vitro preparations of the newborn rodent cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mühlethaler M, De Curtis M, Walton K, Llinás RR (1993) The isolated and perfused brain of the guinea-pig in vitro. Eur J Neurosci 5:915–926

    Article  PubMed  Google Scholar 

  2. Biella G, Panzica F, De Curtis M (1996) Interactions between associative synaptic potentials in the piriform cortex of the in vitro isolated guinea pig brain. Eur J Neurosci 8:1350–1357

    Article  PubMed  CAS  Google Scholar 

  3. De Curtis M, Lilbrizzi L, Uva L, Gnatkovsky V (2012) Neuronal networks in the in vitro isolated guinea pig brain. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 357–383

    Google Scholar 

  4. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  PubMed  CAS  Google Scholar 

  5. Miller G (2006) Optogenetics. Shining new light on neural circuits. Science 314:1674–1676

    Article  PubMed  CAS  Google Scholar 

  6. Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637

    Article  PubMed  CAS  Google Scholar 

  7. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto C, Mcilwain H (1966) Electrical activities in thin sections from mammalian brain maintained in chemically-defined media in vitro. J Neurochem 13:1333–1343

    Article  PubMed  CAS  Google Scholar 

  9. Bagust J, Kelly MEM, Kerkut GA (1985) An isolated mammalian brain-stem spinal-cord preparation suitable for the investigation of descending control of motor-activity. Brain Res 327:370–374

    Article  PubMed  CAS  Google Scholar 

  10. Kerkut GA, Bagust J (1995) The isolated mammalian spinal-cord. Progr Neurobiol 46:1–48

    Article  CAS  Google Scholar 

  11. Ruangkittisakul A, Panaitescu B, Secchia L, Bobocea N, Kantor C, Kuribayashi J, Iizuka M, Ballanyi K (2012) Isolated brainstem respiratory centers from perinatal rodents. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 61–124

    Google Scholar 

  12. Biggs JE, Lu VB, Kim H, Lai A, Todd KG, Ballanyi K, Colmers WF, Smith PA (2012) Defined medium organotypic cultures of spinal cord put ‘pain in a dish’. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 405–435

    Google Scholar 

  13. Mandadi S, Nakanishi ST, Han P, Humphreys J, Whelan PJ (2012) The use of rodent isolated spinal cord preparations to examine motor output. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 437–464

    Google Scholar 

  14. Llinas R, Mühlethaler M (1988) An electrophysiological study of the in vitro, perfused brain-stem cerebellum of adult guinea-pig. J Physiol 404:215–240

    PubMed  CAS  Google Scholar 

  15. Bourque CW, Renaud LP (1984) Activity patterns and osmosensitivity of rat supraoptic neurons in perfused hypothalamic explants. J Physiol 349:631–642

    PubMed  CAS  Google Scholar 

  16. Khalilov I, Esclapez M, Medina I, Aggoun D, Lamsa K, Leinekugel X, Khazipov R, Ben-Ari Y (1997) A novel in vitro preparation: the intact hippocampal formation. Neuron 19:743–749

    Article  PubMed  CAS  Google Scholar 

  17. Khalilov I, Holmes GL, Ben-Ari Y (2003) In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 6(10):1079–1085

    Article  PubMed  CAS  Google Scholar 

  18. Khazipov R, Desfreres L, Khalilov I, Ben-Ari Y (1999) Three-independent-compartment chamber to study in vitro commissural synapses. J Neurophysiol 81:921–924

    PubMed  CAS  Google Scholar 

  19. Luhmann HJ, Dzhala VI, Ben-Ari Y (2000) Generation and propagation of 4-AP-induced epileptiform activity in neonatal intact limbic structures in vitro. Eur J Neurosci 12:2757–2768

    Article  PubMed  CAS  Google Scholar 

  20. Quilichini PP, Diabira D, Chiron C, Ben-Ari Y, Gozlan H (2002) Persistent epileptiform activity induced by low Mg2+ in intact immature brain structures. Eur J Neurosci 16:850–860

    Article  PubMed  CAS  Google Scholar 

  21. Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Kilb W, Luhmann HJ (2003) Carbachol-induced network oscillations in the intact cerebral cortex of the newborn rat. Cereb Cortex 13:409–421

    Article  PubMed  Google Scholar 

  23. Stuart GJ, Dodt H-U, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflüger’s Arch 423:511–518

    Article  CAS  Google Scholar 

  24. Dodt H-U, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336

    Article  PubMed  CAS  Google Scholar 

  25. Steriade M (2001) The intact and sliced brain. MIT Press, Cambridge

    Google Scholar 

  26. Stepanyants A, Martinez LM, Ferecskó AS, Kisvárda ZF (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci USA 106:3555–3560

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Vives MV (2012) Spontaneous rhythmic activity in the adult cerebral cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 263–284

    Google Scholar 

  28. Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K (2012) Spontaneous neural network oscillations in hippocampus, cortex and locus coeruleus of newborn rat and piglet brain slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 315–356

    Google Scholar 

  29. Chang SL, LoTurco JJ, Nisenbaum LK (2000) In vitro biocytin injection into perinatal mouse brain: a method for tract tracing in developing tissue. J Neurosci Methods 97:1–6

    Article  PubMed  CAS  Google Scholar 

  30. Li J, Shen H, Naus CCG, Zhang L, Carlen PL (2001) Upregulation of gap junction connexin 32 with epileptiform activity in the isolated mouse hippocampus. Neuroscience 105:589–598

    Article  PubMed  CAS  Google Scholar 

  31. Quilichini PP, Diabira D, Chiron C, Milh M, Ben-Ari Y, Gozlan H (2003) Effects of antiepileptic drugs on refractory seizures in the intact immature cortico-hippocampal formation in vitro. Epilepsia 44:1365–1374

    Article  PubMed  CAS  Google Scholar 

  32. Zhang XL, Zhang L, Carlen PL (2004) Electrotonic coupling between stratum oriens interneurones in the intact in vitro mouse juvenile hippocampus. J Physiol 558:825–839

    Article  PubMed  CAS  Google Scholar 

  33. Moser J, Kilb W, Werhahn KJ, Luhmann HJ (2006) Early developmental alterations of low-Mg2+-induced epileptiform activity in the intact corticohippocampal formation of the newborn mouse in vitro. Brain Res 1077:170–177

    Article  PubMed  CAS  Google Scholar 

  34. Derchansky M, Rokni D, Rick JT, Wennberg R, Bardakjian BL, Zhang L, Yarom YA, Carlen PL (2006) Bidirectional multisite seizure propagation in the intact isolated hippocampus: the multifocality of the seizure “focus”. Neurobiol Dis 23:312–328

    Article  PubMed  CAS  Google Scholar 

  35. Kilb W, Sinning A, Luhmann HJ (2007) Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse. Neuropharmacology 53:524–533

    Article  PubMed  CAS  Google Scholar 

  36. Derchansky M, Jahromi SS, Mamani M, Shin DS, Sik A, Carlen PL (2008) Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. J Physiol 586:477–494

    Article  PubMed  CAS  Google Scholar 

  37. Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12(12):1491–1493

    Article  PubMed  CAS  Google Scholar 

  38. Nardou R, Ben-Ari Y, Khalilov I (2009) Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus. J Neurophysiol 101(6):2878–2888

    Article  PubMed  CAS  Google Scholar 

  39. Davies ML, Kirov SA, Andrew RD (2007) Whole isolated neocortical and hippocampal preparations and their use in imaging studies. J Neurosci Methods 166:203–216

    Article  PubMed  Google Scholar 

  40. Trapp S, Ballanyi K (2012) Autonomic nervous system in vitro: studying tonically active neurons controlling vagal outflow in rodent brainstem slices. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 1–59

    Google Scholar 

  41. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2012) Physiological properties of human fetal cortex in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 125–158

    Google Scholar 

  42. Fish KN, Gonzales-Burgos G, Zaitsev AV, Lewis DA (2012) Histological characterization of physiologically determined fast spiking interneurons in slices of the primate dorsolateral prefrontal cortex. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 159–181

    Google Scholar 

  43. Nakamura TJ, Michel S, Block GD, Colwell CS (2012) Neural Circuits underlying Circadian Oscillations in Mammals: Clocks in a Dish. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 183–210

    Google Scholar 

  44. Stachniak TS, Sudbury JR, Trudel E, Choe KY, Ciur S. Bourqu CW (2012) Osmoregulatory circuits in slices and en bloc preparations of rodent hypothalamus. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 211–231

    Google Scholar 

  45. McKay BE, Tadayonnejad R, Anderson DM, Engbers JDT, Fernandez FR, Iftinca M, Turner RW (2012) Establishing in vivo like activity in rat cerebellar cells maintained in vitro. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 233–262

    Google Scholar 

  46. Broicher T, Speckmann EJ (2012) Living human brain slices: network analysis using voltage sensitive dyes. In Isolated Central Nervous System Circuits (Ed K Ballanyi), Neuromethods Series Vol. 73 (Ed W Walz). Springer Science+Business Media, LLC, New York, NY, pp 285–300

    Google Scholar 

  47. Wagner J, Luhmann HJ (2006) Activation of metabotropic glutamate receptors induces propagating network oscillations in the intact cerebral cortex of the newborn mouse. Neuropharmacology 51:848–857

    Article  PubMed  CAS  Google Scholar 

  48. Luhmann HJ, Kral T (1997) Hypoxia-induced dysfunction in developing rat neocortex. J Neurophysiol 78:1212–1221

    PubMed  CAS  Google Scholar 

  49. Blanton MG, LoTurco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210

    Article  PubMed  CAS  Google Scholar 

  50. Schröder R, Luhmann HJ (1997) Morpho­logy, electrophysiology and pathophysiology of supragranular neurons in rat primary somatosensory cortex. Eur J Neurosci 9:163–176

    Article  PubMed  Google Scholar 

  51. Frotscher M (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Curr Opin Neuro­biol 8:570–575

    Article  PubMed  CAS  Google Scholar 

  52. Mienville JM (1999) Cajal-Retzius cell physiology: just in time to bridge the 20th century. Cereb Cortex 9:776–782

    Article  PubMed  CAS  Google Scholar 

  53. Kilb W, Luhmann HJ (2000) Characterization of a hyperpolarization-activated inward current in Cajal-Retzius cells in rat neonatal neocortex. J Neurophysiol 84:1681–1691

    PubMed  CAS  Google Scholar 

  54. Luhmann HJ, Reiprich RA, Hanganu I, Kilb W (2000) Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents. J Neurosci Res 62:574–584

    Article  PubMed  CAS  Google Scholar 

  55. Kilb W, Ikeda M, Uchida K, Okabe A, Fukuda A, Luhmann HJ (2002) Depolarizing glycine responses in Cajal-Retzius cells of neonatal rat cerebral cortex. Neuroscience 112:299–307

    Article  PubMed  CAS  Google Scholar 

  56. Derchansky M, Shahar E, Wennberg RA, Samoilova M, Jahromi SS, Abdelmalik PA, Zhang L, Carlen PL (2004) Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus. Hippocampus 14:935–947

    Article  PubMed  CAS  Google Scholar 

  57. Wu CP, Shen H, Luk WP, Zhang L (2002) A fundamental oscillatory state of isolated rodent hippocampus. J Physiol 540:509–527

    Article  PubMed  CAS  Google Scholar 

  58. Khalilov I, Dzhala V, Medina I, Leinekugel X, Melyan Z, Lamsa K, Khazipov A, Ben-Ari Y (1999) Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro. Eur J Neurosci 11:3468–3480

    Article  PubMed  CAS  Google Scholar 

  59. Yang JW, Hanganu-Opatz IL, Sun JJ, Luhmann HJ (2009) Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci 29:9011–9025

    Article  PubMed  CAS  Google Scholar 

  60. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    Article  PubMed  CAS  Google Scholar 

  61. Dupont E, Hanganu IL, Kilb W, Hirsch S, Luhmann HJ (2006) Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439:79–83

    Article  PubMed  CAS  Google Scholar 

  62. Schwartzkroin PA (2009) Encyclopedia of basic epilepsy research. Elsevier, Amsterdam

    Google Scholar 

  63. Ballanyi K, Onimaru H, Homma I (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 59:583–634

    Article  PubMed  CAS  Google Scholar 

  64. Duffy TE, Kohle SJ, Vannucci RC (1975) Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem 24:271–276

    Article  PubMed  CAS  Google Scholar 

  65. Kawai S, Yonetani M, Nakamura H, Okada Y (1989) Effects of deprivation of oxygen and glucose on the neural activity and the level of high energy phosphates in the hippocampal slices of immature and adult rat. Dev Brain Res 48:11–18

    Article  CAS  Google Scholar 

  66. Hansen AJ, Nordstrom C-H (1979) Brain extracellular potassium and energy metabolism during ischemia in juvenile rats after exposure to hypoxia for 24 h. J Neurochem 32:915–920

    Article  PubMed  CAS  Google Scholar 

  67. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    PubMed  CAS  Google Scholar 

  68. Kilb W, Dierkes PW, Syková E, Vargová L, Luhmann HJ (2006) Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus. J Neurosci Res 84:119–129

    Article  PubMed  CAS  Google Scholar 

  69. Lehmenkühler A, Syková E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351

    Article  PubMed  Google Scholar 

  70. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    Article  PubMed  CAS  Google Scholar 

  71. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    Article  PubMed  CAS  Google Scholar 

  72. Zilles K, Wree A (1985) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system, vol 1. Academic, Sydney, pp 375–415

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Deutsche Forschungsgemeinschaft to the authors and by the EC contract LSH-CT-2006-037315 (EPICURE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko J. Luhmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Luhmann, H.J., Kilb, W. (2012). Intact In Vitro Preparations of the Neonatal Rodent Cortex: Analysis of Cellular Properties and Network Activity. In: Ballanyi, K. (eds) Isolated Central Nervous System Circuits. Neuromethods, vol 73. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-020-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-020-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-019-9

  • Online ISBN: 978-1-62703-020-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics