Skip to main content

Reverse Genetic Studies Using Antisense Morpholino Oligonucleotides

  • Protocol
  • First Online:
Book cover Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

Here we present a protocol, which allows loss-of-function studies in Xenopus embryos using antisense morpholino oligonucleotides (MOs). Gene knockdown studies provide a critical method for assessing gene function in vitro and in vivo. Such studies are currently performed in Xenopus using primarily one of the two main methods: (1) overexpression of dominant negative constructs or (2) inhibition of gene function by using MOs targeting either the initiation of translation or mRNA splicing. While a dominant negative approach is very effective, it often suffers from specificity. Given that MOs target very specific nucleotide sequences in the target RNA, it suffers considerably less from issues of specificity. The most convenient method for introducing MOs into embryos is through microinjection, which is a simple procedure. Therefore, a reverse genetics approach in Xenopus using MOs is an extremely powerful tool to study gene function, particularly when taking advantage of available sequence data in the post-genomic era. Furthermore, given the well-established fate map in Xenopus, it is also very easy to generate mosaic knockdown embryos, where the gene of interest is affected in defined regions of the embryo. Finally it should be noted that MOs can also be used to block miRNA function and processing, so that it provides a convenient method to not only perform gene knockdown studies on protein coding genes, but also noncoding genes. The protocol we describe here is for both Xenopus laevis and Xenopus tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–95

    Article  PubMed  CAS  Google Scholar 

  2. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489(1):141–58

    Article  PubMed  CAS  Google Scholar 

  3. Schmajuk G, Sierakowska H, Kole R (1999) Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem 274(31):21783–9

    Article  PubMed  CAS  Google Scholar 

  4. Flynt AS et al (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 39(2):259–63

    Article  PubMed  CAS  Google Scholar 

  5. Kloosterman WP et al (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203

    Article  PubMed  Google Scholar 

  6. Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 20(1):19–32

    Article  PubMed  CAS  Google Scholar 

  7. Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222(1):124–34

    Article  PubMed  CAS  Google Scholar 

  8. Howard EW et al (2001) SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos. Development 128(3):365–75

    PubMed  CAS  Google Scholar 

  9. Satou Y, Imai KS, Satoh N (2001) Action of morpholinos in Ciona embryos. Genesis 30(3):103–6

    Article  PubMed  CAS  Google Scholar 

  10. Audic Y et al (2001) Cyclin E morpholino delays embryogenesis in Xenopus. Genesis 30(3):107–9

    Article  PubMed  CAS  Google Scholar 

  11. Schweickert A et al (2001) Pitx1 and Pitx2c are required for ectopic cement gland formation in Xenopus laevis. Genesis 30(3):144–8

    Article  PubMed  CAS  Google Scholar 

  12. Sumanas S, Ekker SC (2001) Xenopus frizzled-7 morphant displays defects in dorsoventral patterning and convergent extension movements during gastrulation. Genesis 30(3):119–22

    Article  PubMed  CAS  Google Scholar 

  13. Nutt SL et al (2001) Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 30(3):110–3

    Article  PubMed  CAS  Google Scholar 

  14. Segawa H et al (2001) Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish. Neuron 30(2):423–36

    Article  PubMed  CAS  Google Scholar 

  15. Shepherd IT, Beattie CE, Raible DW (2001) Functional analysis of zebrafish GDNF. Dev Biol 231(2):420–35

    Article  PubMed  CAS  Google Scholar 

  16. Yang Z, Liu N, Lin S (2001) A zebrafish forebrain-specific zinc finger gene can induce ectopic dlx2 and dlx6 expression. Dev Biol 231(1):138–48

    Article  PubMed  CAS  Google Scholar 

  17. Kos R et al (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing ­melanogenesis in avian embryos. Development 128(8):1467–79

    PubMed  CAS  Google Scholar 

  18. Coonrod SA et al (2001) A morpholino phenocopy of the mouse mos mutation. Genesis 30(3):198–200

    Article  PubMed  CAS  Google Scholar 

  19. Partridge M et al (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 6(3):169–75

    Article  PubMed  CAS  Google Scholar 

  20. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30(3):154–6

    Article  PubMed  CAS  Google Scholar 

  21. Tan X et al (2006) SmyD1, a histone ­methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103(8):2713–8

    Article  PubMed  CAS  Google Scholar 

  22. Kunz M et al (2004) Autoregulation of canonical Wnt signaling controls midbrain development. Dev Biol 273(2):390–401

    Article  PubMed  CAS  Google Scholar 

  23. Moody SA (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119(2):560–78

    Article  PubMed  CAS  Google Scholar 

  24. Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122(2):300–19

    Article  PubMed  CAS  Google Scholar 

  25. Rana AA et al (2006) Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2(11):e193

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Amaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhao, Y., Ishibashi, S., Amaya, E. (2012). Reverse Genetic Studies Using Antisense Morpholino Oligonucleotides. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics