Skip to main content

Selecting and Purifying Autonomous Human Variable Heavy (VH) Domains

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 911))

Abstract

Antibodies are invaluable macromolecules effectively utilized as detection reagents and therapeutics. Traditionally, researchers have relied upon the entire immunoglobulin molecule, however advances in protein engineering have ushered the use of antibody fragments as equally important biological tools such that at present, the downstream application generally dictates the antibody format employed. We provide herein robust and proven protocols for the isolation of autonomous human antibody variable heavy domains (VH). The strategy utilizes combinatorial phage-displayed libraries targeting human VH domain positions previously shown to promote autonomous behavior, and selection against a specified antigen. Subsequently, autonomous VH domains are characterized and chosen using standard biophysical methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217

    Article  PubMed  CAS  Google Scholar 

  2. Ward ES, Gussow D, Griffiths AD, Jones PT, Winter G (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341:544–546

    Article  PubMed  CAS  Google Scholar 

  3. Saerens D, Ghassabeh GH, Muyldermans S (2008) Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 8:600–608

    Article  PubMed  CAS  Google Scholar 

  4. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  PubMed  CAS  Google Scholar 

  5. Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, Gobert M, Conrath K et al (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456–462

    Article  PubMed  CAS  Google Scholar 

  6. Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S et al (1999) A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7:361–370

    Article  PubMed  CAS  Google Scholar 

  7. Desmyter A, Decanniere K, Muyldermans S, Wyns L (2001) Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 276:26285–26290

    Article  PubMed  CAS  Google Scholar 

  8. Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L et al (2002) Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology. J Biol Chem 277:23645–23650

    Article  PubMed  CAS  Google Scholar 

  9. Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F et al (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811

    Article  PubMed  CAS  Google Scholar 

  10. Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W et al (1996) The crystal structure of a llama heavy chain variable domain. Nat Struct Biol 3:752–757

    Article  PubMed  CAS  Google Scholar 

  11. Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K et al (2000) Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 39:1217–1222

    Article  PubMed  CAS  Google Scholar 

  12. Spinelli S, Tegoni M, Frenken L, van Vliet C, Cambillau C (2001) Lateral recognition of a dye hapten by a llama VHH domain. J Mol Biol 311:123–129

    Article  PubMed  CAS  Google Scholar 

  13. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG et al (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37:579–590

    Article  PubMed  CAS  Google Scholar 

  14. Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490

    Article  PubMed  CAS  Google Scholar 

  15. Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26:230–235

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930

    Article  PubMed  CAS  Google Scholar 

  17. Davies J, Riechmann L (1994) ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 339:285–290

    Article  PubMed  CAS  Google Scholar 

  18. Howard GC, Kaser MR (2007) Making and using antibodies: a practical handbook. CRC Press/Taylor & Francis, Boca Raton, FL, p 394

    Google Scholar 

  19. Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS et al (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol 340:1073–1093

    Article  PubMed  CAS  Google Scholar 

  20. Sidhu SS, Weiss GA, Wells JA (2000) High copy display of large proteins on phage for functional selections. J Mol Biol 296:487–495

    Article  PubMed  CAS  Google Scholar 

  21. Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P et al (2008) Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem 283:3639–3654

    Article  PubMed  CAS  Google Scholar 

  22. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  23. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  PubMed  CAS  Google Scholar 

  24. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  PubMed  CAS  Google Scholar 

  25. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89:4285–4289

    Article  PubMed  CAS  Google Scholar 

  26. Tokunaga E, Oki E, Nishida K, Koga T, Egashira A et al (2006) Trastuzumab and breast cancer: developments and current status. Int J Clin Oncol 11:199–208

    Article  PubMed  CAS  Google Scholar 

  27. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G et al (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37:D1006–D1012

    Article  PubMed  CAS  Google Scholar 

  28. Jespers L, Schon O, James LC, Veprintsev D, Winter G (2004) Crystal structure of HEL4, a soluble, refoldable human V(H) single domain with a germ-line scaffold. J Mol Biol 337:893–903

    Article  PubMed  CAS  Google Scholar 

  29. Sidhu SS (2005) Phage display in biotechnology and drug discovery. Boca Raton: Taylor & Francis, xviii, p 748

    Google Scholar 

  30. Fellouse FA, Wiesmann C, Sidhu SS (2004) Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A 101:12467–12472

    Article  PubMed  CAS  Google Scholar 

  31. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382

    Article  PubMed  CAS  Google Scholar 

  32. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  PubMed  CAS  Google Scholar 

  33. Bond CJ, Marsters JC, Sidhu SS (2003) Contributions of CDR3 to V H H domain stability and the design of monobody scaffolds for naive antibody libraries. J Mol Biol 332:643–655

    Article  PubMed  CAS  Google Scholar 

  34. Bond CJ, Wiesmann C, Marsters JC Jr, Sidhu SS (2005) A structure-based database of antibody variable domain diversity. J Mol Biol 348:699–709

    Article  PubMed  CAS  Google Scholar 

  35. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989–994

    Article  PubMed  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535

    Article  PubMed  CAS  Google Scholar 

  38. Kabat EA, Wu TT, Reid-Miller M, Perry H, Gottesman K (1987) Sequence of proteins of immunological interest. National Institutes of Health Research, Bethesda, p 2387

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachdev S. Sidhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tonikian, R., Sidhu, S.S. (2012). Selecting and Purifying Autonomous Human Variable Heavy (VH) Domains. In: Saerens, D., Muyldermans, S. (eds) Single Domain Antibodies. Methods in Molecular Biology, vol 911. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-968-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-968-6_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-967-9

  • Online ISBN: 978-1-61779-968-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics