Skip to main content

PEGylation of Antibody Fragments for Half-Life Extension

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 901))

Abstract

Antibody fragments (Fab’s) represent important structure for creating new therapeutics. Compared to full antibodies Fab’ fragments possess certain advantages, including higher mobility and tissue penetration, ability to bind antigen monovalently and lack of fragment crystallizable (Fc) region-mediated functions such as antibody-dependent cell mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). The main drawback for the use of Fab’s in clinical applications is associated with their short half-life in vivo, which is a consequence of no longer having the Fc region. To exert meaningful clinical effects, the half-life of Fab’s need to be extended, which has been achieved by postproduction chemical attachment of polyethylene glycol (PEG) chain to protein using PEGylation technology. The most suitable approach employs PEG-maleimide attachment to cysteines, either to the free hinge cysteine or to C-terminal cysteines involved in interchain disulfide linkage of the heavy and light chain. Hence, protocols for mono-PEGylation of Fab via free cysteine in the hinge region and di-PEGylation of Fab via interchain disulfide bridge are provided in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liddell JM (2009) Production strategies for antibody fragment therapeutics. BioPharm Int 2:36–42

    Google Scholar 

  2. Labrijn AF, Aalberse RC, Schuurman J (2008) When binding is enough: nonactivating antibody formats. Curr Opin Immunol 20:479–485

    Article  PubMed  CAS  Google Scholar 

  3. Rader C (2009) Overview on concepts and applications of Fab antibody fragments. Curr Protoc Protein Sci. Chapter 6, 6.9.1–6.9.14

    Google Scholar 

  4. Chapman AP, Antoniw P, Spitali M et al (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 17:780–783

    Article  PubMed  CAS  Google Scholar 

  5. Chen C, Constantinou A, Deonarain M (2011) Modulating antibody pharmacokinetics using hydrophilic polymers. Expert Opin Drug Deliv 8:1221–1236

    Article  PubMed  CAS  Google Scholar 

  6. Kontermann RE (2009) Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23:93–109

    Article  PubMed  CAS  Google Scholar 

  7. Constantinou A, Epenetos AA, Hreczuk-Hirst D et al (2008) Modulation of antibody pharmacokinetics by chemical polysialylation. Bioconjug Chem 19:643–650

    Article  PubMed  CAS  Google Scholar 

  8. Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5:113–128

    Article  PubMed  CAS  Google Scholar 

  9. Kinstler O, Molineux G, Treuheit M et al (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54:477–485

    Article  PubMed  CAS  Google Scholar 

  10. Bailon P, Won CY (2009) PEG-modified biopharmaceuticals. Expert Opin Drug Deliv 6:1–16

    Article  PubMed  CAS  Google Scholar 

  11. Humphreys DP, Heywood SP, Henry A et al (2007) Alternative antibody Fab’ fragment PEGylation strategies: combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering. Protein Eng Des Sel 20:227–234

    Article  PubMed  CAS  Google Scholar 

  12. Wakefield I, Peters C, Burkly L et al (2010) CDP7657, a monovalent Fab PEG anti-CD40L antibody, inhibits immune responses in both HuSCID mice and non-human primates. Arthritis Rheum 62:1245

    Google Scholar 

  13. Vugler A, Sutton D, Marshall D et al (2010) Blockade of CD40L with a monovalent Fab’ PEG monoclonal antibody inhibits disease in the murine collagen-induced arthritis model. Arthritis Rheum 62:1244

    Article  Google Scholar 

  14. Poirier N, Azimzadeh AM, Zhang T et al (2010) Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci Transl Med 2:17ra10

    Article  PubMed  Google Scholar 

  15. Balan S, Choi JW, Godwin A et al (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem 18:61–76

    Article  PubMed  CAS  Google Scholar 

  16. Shaunak S, Godwin A, Choi JW et al (2006) Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol 2:312–313

    Article  PubMed  CAS  Google Scholar 

  17. Kwong KY, Rader C (2009) E. coli expression and purification of Fab antibody fragments. Curr Protoc Protein Sci. Chapter 6, 6.10

    Google Scholar 

  18. Pepinsky RB, Walus L, Shao Z et al (2011) Production of a PEGylated Fab’ of the anti-LINGO-1 Li33 antibody and assessment of its biochemical and functional properties in vitro and in a rat model of remyelination. Bioconjug Chem 22:200–210

    Article  PubMed  CAS  Google Scholar 

  19. Gach JS, Maurer M, Hahn R et al (2007) High level expression of a promising anti-idiotypic antibody fragment vaccine against HIV-1 in Pichia pastoris. J Biotechnol 128:735–746

    Article  PubMed  CAS  Google Scholar 

  20. Zhao Y, Gutshall L, Jiang H et al (2009) Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: papain digestion of mAb and transient expression in mammalian cells. Protein Exp Purif 67:182–189

    Article  CAS  Google Scholar 

  21. Lu Y, Harding SE, Turner A et al (2008) Effect of PEGylation on the solution conformation of antibody fragments. J Pharm Sci 97:2062–2079

    Article  PubMed  CAS  Google Scholar 

  22. Leong SR, DeForge L, Presta L et al (2001) Adapting pharmacokinetic properties of a humanized anti-interleukin-8 antibody for therapeutic applications using site-specific pegylation. Cytokine 16:106–119

    Article  PubMed  CAS  Google Scholar 

  23. Kurfurst MM (1992) Detection and molecular-weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl-sulfate polyacrylamide-gel electrophoresis. Anal Biochem 200:244–248

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Jevševar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jevševar, S., Kusterle, M., Kenig, M. (2012). PEGylation of Antibody Fragments for Half-Life Extension. In: Proetzel, G., Ebersbach, H. (eds) Antibody Methods and Protocols. Methods in Molecular Biology, vol 901. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-931-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-931-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-930-3

  • Online ISBN: 978-1-61779-931-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics