Skip to main content

Engineering of Affibody Molecules for Therapy and Diagnostics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

Affibody molecules are small and robust non-immunoglobulin affinity ligands capable of binding to a wide range of protein targets. They are selected from combinatorial libraries based on a 58 amino acid, three-alpha-helical Z-domain scaffold. They share no sequence or structural homologies to antibodies and in contrast to antibodies they can be functionally produced both by peptide synthesis and by recombinant expression in Escherichia coli. Protein engineering is used to adapt Affibody molecules binding to a target of interest to the specific demands imposed by the intended application. Obviously, the optimal molecule for molecular imaging will be different from the optimal molecule for therapy. Here, we describe general strategies to optimize Affibody molecules for diagnostic imaging and therapy applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. An Z (2010) Monoclonal antibodies – a proven and rapidly expanding therapeutic modality for human diseases. Protein Cell 1:319–330

    Article  PubMed  CAS  Google Scholar 

  2. Kenanova V, Wu AM (2006) Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 3:53–70

    Article  PubMed  CAS  Google Scholar 

  3. Mohlmann S et al (2011) Site-specific modification of ED-B-targeting antibody using intein-fusion technology. BMC Biotechnol 11:76

    Article  PubMed  Google Scholar 

  4. Friedman M, Stahl S (2009) Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem 53:1–29

    Article  PubMed  CAS  Google Scholar 

  5. Löfblom J et al (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680

    Article  PubMed  Google Scholar 

  6. Zoller F, Haberkorn U, Mier W (2011) Miniproteins as phage display-scaffolds for clinical applications. Molecules 16:2467–2485

    Article  PubMed  CAS  Google Scholar 

  7. Baum RP et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled Affibody molecules. J Nucl Med 51:892–897

    Article  PubMed  Google Scholar 

  8. Tolcher AW et al (2011) Phase I and pharmacokinetic study of CT-322 (BMS-844203), a targeted Adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clin Cancer Res 17:363–371

    Article  PubMed  CAS  Google Scholar 

  9. Uhlén M et al (1984) Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem 259:1695–1702

    PubMed  Google Scholar 

  10. Moks T et al (1986) Staphylococcal protein A consists of five IgG-binding domains. Eur J Biochem 156:637–643

    Article  PubMed  CAS  Google Scholar 

  11. Nilsson B et al (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113

    Article  PubMed  CAS  Google Scholar 

  12. Arora P, Oas TG, Myers JK (2004) Fast and faster: a designed variant of the B-domain of protein A folds in 3 microsec. Protein Sci 13:847–853

    Article  PubMed  CAS  Google Scholar 

  13. Nord K et al (1995) A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng 8:601–608

    Article  PubMed  CAS  Google Scholar 

  14. Orlova A et al (2006) Tumor imaging using a picomolar affinity HER2 binding Affibody molecule. Cancer Res 66:4339–4348

    Article  PubMed  CAS  Google Scholar 

  15. Grönwall C et al (2007) Selection and characterization of Affibody ligands binding to Alzheimer amyloid beta peptides. J Biotechnol 128:162–183

    Article  PubMed  Google Scholar 

  16. Lindborg M et al (2011) Engineered high-affinity Affibody molecules targeting platelet-derived growth factor receptor beta in vivo. J Mol Biol 407:298–315

    Article  PubMed  CAS  Google Scholar 

  17. Tolmachev V (2008) Choice of radionuclides and radiolabeling techniques. In: Stigbrand T (ed) Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media B.V, Dordrecht, pp 145–174

    Chapter  Google Scholar 

  18. Mattes MJ et al (1994) Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells. Cancer 73:787–793

    Article  PubMed  CAS  Google Scholar 

  19. Shih LB et al (1994) The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med 35:899–908

    PubMed  CAS  Google Scholar 

  20. Press OW et al (1996) Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res 56:2123–2129

    PubMed  CAS  Google Scholar 

  21. Orlova A et al (2000) Cellular processing of 125I- and 111In-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nucl Med Biol 27:827–835

    Article  PubMed  CAS  Google Scholar 

  22. Tolmachev V, Orlova A, Lundqvist H (2003) Approaches to improve cellular retention of radiohalogen labels delivered by internalising tumour-targeting proteins and peptides. Curr Med Chem 10:2447–2460

    Article  PubMed  CAS  Google Scholar 

  23. Behr TM et al (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    PubMed  CAS  Google Scholar 

  24. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  PubMed  CAS  Google Scholar 

  25. Thorpe SR, Baynes JW, Chroneos ZC (1993) The design and application of residualizing labels for studies of protein catabolism. FASEB J 7:399–405

    PubMed  CAS  Google Scholar 

  26. Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201–212

    Article  PubMed  CAS  Google Scholar 

  27. Vegt E et al (2010) Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med 51:1049–1058

    Article  PubMed  CAS  Google Scholar 

  28. Hagenbuch B (2010) Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther 87:39–47

    Article  PubMed  CAS  Google Scholar 

  29. Decristoforo C, Mather SJ (1999) 99m-Technetium-labelled peptide-HYNIC conjugates: effects of lipophilicity and stability on biodistribution. Nucl Med Biol 26:389–396

    Article  PubMed  CAS  Google Scholar 

  30. Wilbur DS (1992) Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjug Chem 3:433–470

    Article  PubMed  CAS  Google Scholar 

  31. Sundin J et al (1999) High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T. Nucl Med Biol 26:923–929

    Article  PubMed  CAS  Google Scholar 

  32. Nikula TK et al (1995) Impact of the high tyrosine fraction in complementarity determining regions: measured and predicted effects of radioiodination on IgG immunoreactivity. Mol Immunol 32:865–872

    Article  PubMed  CAS  Google Scholar 

  33. Steffen AC et al (2005) In vitro characterization of a bivalent anti-HER-2 Affibody with potential for radionuclide-based diagnostics. Cancer Biother Radiopharm 20:239–248

    Article  PubMed  CAS  Google Scholar 

  34. Tolmachev V et al (2009) Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur J Nucl Med Mol Imaging 36:692–701

    Article  PubMed  Google Scholar 

  35. Camera L et al (1994) Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J Nucl Med 35:882–889

    PubMed  CAS  Google Scholar 

  36. Tolmachev V et al (2008) Evaluation of a maleimido derivative of CHX-A″ DTPA for site-specific labeling of Affibody molecules. Bioconjug Chem 19:1579–1587

    Article  PubMed  CAS  Google Scholar 

  37. Kelly MP et al (2009) Therapeutic efficacy of 177Lu-CHX-A″-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy. Prostate 69:92–104

    Article  PubMed  CAS  Google Scholar 

  38. De Leon-Rodriguez LM, Kovacs Z (2008) The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjug Chem 19:391–402

    Article  PubMed  Google Scholar 

  39. Anderson CJ et al (2008) Cross-bridged macrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Q J Nucl Med Mol Imaging 52:185–192

    PubMed  CAS  Google Scholar 

  40. Wållberg H, Orlova A (2008) Slow internalization of anti-HER2 synthetic Affibody monomer 111In-DOTA-ZHER2:342-pep2: implications for development of labeled tracers. Cancer Biother Radiopharm 23:435–442

    Article  PubMed  Google Scholar 

  41. Ahlgren S et al (2008) Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant Affibody molecules. Bioconjug Chem 19:235–243

    Article  PubMed  CAS  Google Scholar 

  42. Tran TA et al (2009) Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging. Eur J Nucl Med Mol Imaging 36:1864–1873

    Article  PubMed  CAS  Google Scholar 

  43. Tolmachev V et al (2009) Affibody molecules for epidermal growth factor receptor targeting in vivo: aspects of dimerization and labeling chemistry. J Nucl Med 50:274–283

    Article  PubMed  Google Scholar 

  44. Orlova A et al (2006) Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 Affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med 47:512–519

    PubMed  CAS  Google Scholar 

  45. Orlova A et al (2009) On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled Affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 50:417–425

    Article  PubMed  CAS  Google Scholar 

  46. Kramer-Marek G et al (2008) [18F]FBEM-ZHER2:342-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018

    Article  PubMed  CAS  Google Scholar 

  47. Cheng Z et al (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–813

    Article  PubMed  CAS  Google Scholar 

  48. Tolmachev V et al (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568

    Article  PubMed  CAS  Google Scholar 

  49. Orlova A et al (2007) Update: Affibody molecules for molecular imaging and therapy for cancer. Cancer Biother Radiopharm 22:573–584

    Article  PubMed  CAS  Google Scholar 

  50. Tolmachev V et al (2006) 111In-benzyl-DTPA-ZHER2:342, an Affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 47:846–853

    PubMed  CAS  Google Scholar 

  51. Orlova A et al (2007) Synthetic Affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186

    Article  PubMed  CAS  Google Scholar 

  52. Engfeldt T et al (2007) Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 34:722–733

    Article  PubMed  CAS  Google Scholar 

  53. Wang Y, Liu X, Hnatowich DJ (2007) An improved synthesis of NHS-MAG3 for conjugation and radiolabeling of biomolecules with 99mTc at room temperature. Nat Protoc 2:972–978

    Article  PubMed  CAS  Google Scholar 

  54. Lister-James J, Moyer BR, Dean RT (1997) Pharmacokinetic considerations in the development of peptide-based imaging agents. Q J Nucl Med 41:111–118

    PubMed  CAS  Google Scholar 

  55. Engfeldt T et al (2007) 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 34:1843–1853

    Article  PubMed  CAS  Google Scholar 

  56. Tran T et al (2007) 99mTc-maEEE-ZHER2:342, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 18:1956–1964

    Article  PubMed  CAS  Google Scholar 

  57. Ekblad T et al (2008) Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging 35:2245–2255

    Article  PubMed  CAS  Google Scholar 

  58. Tran TA et al (2008) Effects of lysine-containing mercaptoacetyl-based chelators on the biodistribution of 99mTc-labeled anti-HER2 Affibody molecules. Bioconjug Chem 19:2568–2576

    Article  PubMed  CAS  Google Scholar 

  59. Tran T et al (2007) In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem 18:549–558

    Article  PubMed  CAS  Google Scholar 

  60. Ahlgren S et al (2009) Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant Affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 50:781–789

    Article  PubMed  CAS  Google Scholar 

  61. Wållberg H et al (2011) Molecular design and optimization of 99mTc-labeled recombinant Affibody molecules improves their biodistribution and imaging properties. J Nucl Med 52:461–469

    Article  PubMed  Google Scholar 

  62. Feldwisch J et al (2010) Design of an optimized scaffold for Affibody molecules. J Mol Biol 398:232–247

    Article  PubMed  CAS  Google Scholar 

  63. Zheng D, Aramini JM, Montelione GT (2004) Validation of helical tilt angles in the solution NMR structure of the Z domain of Staphylococcal protein A by combined analysis of residual dipolar coupling and NOE data. Protein Sci 13:549–554

    Article  PubMed  CAS  Google Scholar 

  64. Ahlgren S et al (2010) Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation Affibody molecule with a fundamentally reengineered scaffold. J Nucl Med 51:1131–1138

    Article  PubMed  CAS  Google Scholar 

  65. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039–1048

    Article  PubMed  CAS  Google Scholar 

  66. Tolmachev V et al (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67:2773–2782

    Article  PubMed  CAS  Google Scholar 

  67. Mume E et al (2005) Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 Affibody. Bioconjug Chem 16:1547–1555

    Article  PubMed  CAS  Google Scholar 

  68. Orlova A et al (2010) 186Re-maSGS-ZHER2:342, a potential Affibody conjugate for systemic therapy of HER2-expressing tumours. Eur J Nucl Med Mol Imaging 37:260–269

    Article  PubMed  CAS  Google Scholar 

  69. Johansson MU et al (2002) Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem 277:8114–8120

    Article  PubMed  CAS  Google Scholar 

  70. Lejon S et al (2004) Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem 279:42924–42928

    Article  PubMed  CAS  Google Scholar 

  71. Andersen JT et al (2011) Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin binding domain. J Biol Chem 286:5234–5241

    Article  PubMed  CAS  Google Scholar 

  72. Nguyen A et al (2006) The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng Des Sel 19:291–297

    Article  PubMed  CAS  Google Scholar 

  73. Jonsson A et al (2008) Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel 21:515–527

    Article  PubMed  CAS  Google Scholar 

  74. Hopp J et al (2010) The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng Des Sel 23:827–834

    Article  PubMed  CAS  Google Scholar 

  75. Goetsch L et al (2003) Identification of B- and T-cell epitopes of BB, a carrier protein derived from the G protein of Streptococcus strain G148. Clin Diagn Lab Immunol 10:125–132

    PubMed  CAS  Google Scholar 

  76. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237

    Article  PubMed  CAS  Google Scholar 

  77. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296

    Article  PubMed  Google Scholar 

  78. Ekblad T et al (2009) Positioning of 99mTc-chelators influences radiolabeling, stability and biodistribution of Affibody molecules. Bioorg Med Chem Lett 19:3912–3914

    Article  PubMed  CAS  Google Scholar 

  79. Tolmachev V et al (2010) Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-ZEGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imaging 37:613–622

    Article  PubMed  Google Scholar 

  80. Namavari M et al (2008) Direct site-specific radiolabeling of an Affibody protein with 4-[18F]fluorobenzaldehyde via oxime chemistry. Mol Imaging Biol 10:177–181

    Article  PubMed  Google Scholar 

  81. Wållberg H et al (2010) Evaluation of the radiocobalt-labeled [MMA-DOTA-Cys61]-ZHER2:2395-Cys Affibody molecule for targeting of HER2-expressing tumors. Mol Imaging Biol 12:54–62

    Article  PubMed  Google Scholar 

  82. Cheng Z et al (2010) 64Cu-labeled Affibody molecules for imaging of HER2 expressing tumors. Mol Imaging Biol 12:316–324

    Article  PubMed  Google Scholar 

  83. Miao Z et al (2010) Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled Affibody protein. Bioconjug Chem 21:947–954

    Article  PubMed  CAS  Google Scholar 

  84. Tolmachev V et al (2010) A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. Eur J Nucl Med Mol Imaging 37:1356–1367

    Article  PubMed  CAS  Google Scholar 

  85. Fortin MA et al (2007) Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 19:285–291

    PubMed  CAS  Google Scholar 

  86. Tolmachev V et al (2009) The influence of Bz-DOTA and CHX-A″-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules: implications for 114mIn-mediated targeting therapy. Eur J Nucl Med Mol Imaging 36:1460–1468

    Article  PubMed  Google Scholar 

  87. Steffen AC et al (2007) Biodistribution of 211At labeled HER-2 binding Affibody molecules in mice. Oncol Rep 17:1141–1147

    PubMed  CAS  Google Scholar 

  88. Sandberg D et al (2011) First-in-human whole-body HER2-receptor mapping using Affibody molecular imaging. Cancer Res 71[24Supl.]:273s Abstract P2-09-01

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Anders Wennborg for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Feldwisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Feldwisch, J., Tolmachev, V. (2012). Engineering of Affibody Molecules for Therapy and Diagnostics. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics