Skip to main content

Mammalian Stable Expression of Biotherapeutics

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

Many therapeutically relevant proteins, like IgG antibodies, are highly complex, multimeric glycoproteins that are difficult to express in microbial systems and thus usually produced in mammalian host cells. During the past two decades, stable mammalian expression technologies have made huge progress resulting in highly increased speed of cell line development and yield of manufacturing processes. Here, we give an overview of technologies that are applied at different stages of state-of-the-art cell line development processes for biomanufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346

    Article  PubMed  CAS  Google Scholar 

  2. Jefferis R (2007) Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 7:1401–1413

    Article  PubMed  CAS  Google Scholar 

  3. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  PubMed  CAS  Google Scholar 

  4. Jostock T (2011) Expression of antibody in mammalian cells. In: Al-Rubeai M (ed) Cell Engineering. Springer Science and Business Media B.V., Dordrecht

    Google Scholar 

  5. Puck TT (1958) Genetics of somatic mammalian cells. J Exp Med 108:945–955

    Article  PubMed  CAS  Google Scholar 

  6. Urlaub G, Chasin LA (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A 77:4216–4220

    Article  PubMed  CAS  Google Scholar 

  7. Urlaub G, Kas E, Carothers AM, Chasin LA (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33:405–412

    Article  PubMed  CAS  Google Scholar 

  8. Fussenegger M, Bailey JE, Hauser H, Mueller PP (1999) Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol 17:35–42

    Article  PubMed  CAS  Google Scholar 

  9. Dinnis DM, James DC (2005) Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng 91:180–189

    Article  PubMed  CAS  Google Scholar 

  10. Florin L, Pegel A, Becker E, Hausser A, Olayioye MA, Kaufmann H (2009) Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells. J Biotechnol 141:84–90

    Article  PubMed  CAS  Google Scholar 

  11. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622

    Article  PubMed  CAS  Google Scholar 

  12. Yamane-Ohnuki N, Yamano K, Satoh M (2008) Biallelic gene knockouts in Chinese hamster ovary cells. Methods Mol Biol 435:1–16

    Article  PubMed  CAS  Google Scholar 

  13. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  PubMed  CAS  Google Scholar 

  14. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  PubMed  CAS  Google Scholar 

  15. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  PubMed  CAS  Google Scholar 

  16. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    Article  PubMed  CAS  Google Scholar 

  17. Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    PubMed  CAS  Google Scholar 

  18. Jones D, Kroos N, Anema R, van Montfort B, Vooys A, van der Kraats S, van der Helm E, Smits S, Schouten J, Brouwer K, Lagerwerf F, van Berkel P, Opstelten DJ, Logtenberg T, Bout A (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19:163–168

    Article  PubMed  CAS  Google Scholar 

  19. Rose T, Winkler K, Brundke E, Jordan I, Sandig V (2005) Alternative strategies and new cell lines for high-level production of biopharmaceuticals. In: Knäblein J (ed) Modern biopharmaceuticals, Wiley-VCH, pp 761–777

    Google Scholar 

  20. Olivier S, Jacoby M, Brillon C, Bouletreau S, Mollet T, Nerriere O, Angel A, Danet S, Souttou B, Guehenneux F, Gauthier L, Berthome M, Vie H, Beltraminelli N, Mehtali M (2010) EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity. MAbs 2:405–415

    Google Scholar 

  21. Weber W, Fussenegger M (2004) Inducible gene expression in mammalian cells and mice. Methods Mol Biol 267:451–466

    PubMed  CAS  Google Scholar 

  22. Kalwy S, Rance J, Young R (2006) Toward more efficient protein expression: keep the message simple. Mol Biotechnol 34:151–156

    Article  PubMed  CAS  Google Scholar 

  23. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133

    Article  PubMed  CAS  Google Scholar 

  24. Jostock T, Vanhove M, Brepoels E, Van Gool R, Daukandt M, Wehnert A, Van Hegelsom R, Dransfield D, Sexton D, Devlin M, Ley A, Hoogenboom H, Mullberg J (2004) Rapid generation of functional human IgG antibodies derived from Fab-on-phage display libraries. J Immunol Methods 289:65–80

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Menzel C, Meier D, Zhang C, Dubel S, Jostock T (2007) A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods 318:113–124

    Article  PubMed  CAS  Google Scholar 

  26. Li J, Zhang C, Jostock T, Dubel S (2007) Analysis of IgG heavy chain to light chain ratio with mutant Encephalomyocarditis virus internal ribosome entry site. Protein Eng Des Sel 20:491–496

    Article  PubMed  CAS  Google Scholar 

  27. Borman AM, Deliat FG, Kean KM (1994) Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J 13:3149–3157

    PubMed  CAS  Google Scholar 

  28. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, Jooss K (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23:584–590

    Article  PubMed  CAS  Google Scholar 

  29. Jostock T, Dragic Z, Fang J, Jooss K, Wilms B, Knopf HP (2010) Combination of the 2A/furin technology with an animal component free cell line development platform process. Appl Microbiol Biotechnol 87:1517–1524

    Article  PubMed  CAS  Google Scholar 

  30. Oumard A, Qiao J, Jostock T, Li J, Bode J (2006) Recommended method for chromosome exploitation: RMCE-based cassette-exchange systems in animal cell biotechnology. Cytotechnology 50:93–108

    Article  PubMed  CAS  Google Scholar 

  31. Bode J, Schlake T, Iber M, Schubeler D, Seibler J, Snezhkov E, Nikolaev L (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 381:801–813

    Article  PubMed  CAS  Google Scholar 

  32. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  Google Scholar 

  33. Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci U S A 89:7905–7909

    Article  PubMed  CAS  Google Scholar 

  34. Arnould S, Delenda C, Grizot S, Desseaux C, Paques F, Silva GH, Smith J (2010) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 24:27–31

    Article  PubMed  Google Scholar 

  35. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  PubMed  CAS  Google Scholar 

  36. Kennard ML, Goosney DL, Monteith D, Zhang L, Moffat M, Fischer D, Mott J (2009) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104:540–553

    Article  PubMed  CAS  Google Scholar 

  37. Cacciatore JJ, Chasin LA, Leonard EF (2010) Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv 28:673–681

    Article  PubMed  CAS  Google Scholar 

  38. Mott J (2011) Cell line development and engineering conference, Munich

    Google Scholar 

  39. Jostock T, Knopf H-P, Wilms B, Drori S, Assaraf YGA (2010) Antibody development and production conference. IBCLifeScience, Carlsbad, CA

    Google Scholar 

  40. Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25:425–432

    Article  PubMed  CAS  Google Scholar 

  41. Carroll S, Al-Rubeai M (2004) The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther 4:1821–1829

    Article  PubMed  CAS  Google Scholar 

  42. Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci U S A 92:1921–1925

    Article  PubMed  CAS  Google Scholar 

  43. Holmes P, Al-Rubeai M (1999) Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230:141–147

    Article  PubMed  CAS  Google Scholar 

  44. Borth N, Zeyda M, Kunert R, Katinger H (2000) Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71:266–273

    Article  PubMed  CAS  Google Scholar 

  45. Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155

    Article  PubMed  CAS  Google Scholar 

  46. DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, Estes S, Karey KP (2007) Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23:465–472

    Article  PubMed  CAS  Google Scholar 

  47. Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA (2008) Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 99:578–587

    Article  PubMed  CAS  Google Scholar 

  48. Powell KT, Weaver JC (1990) Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Biotechnology (N Y) 8:333–337

    Article  CAS  Google Scholar 

  49. Kenney JS, Gray F, Ancel MH, Dunne JF (1995) Production of monoclonal antibodies using a secretion capture report web. Bio­technology (N Y) 13:787–790

    Article  CAS  Google Scholar 

  50. Porter AJ, Dickson AJ, Racher AJ (2010) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: realizing the potential in bioreactors. Biotechnol Prog 26:1446–1454

    Article  PubMed  CAS  Google Scholar 

  51. Porter AJ, Racher AJ, Preziosi R, Dickson AJ (2010) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation. Biotechnol Prog 26:1455–1464

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jostock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jostock, T., Knopf, HP. (2012). Mammalian Stable Expression of Biotherapeutics. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics