Skip to main content

Transient Expression Technologies: Past, Present, and Future

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

The first protocols describing transient gene expression in mammalian cells for the rapid generation of recombinant proteins emerged more than 10 years ago as an alternative to the establishment of stable, often amplified clonal cell lines, and relieved somewhat the bias against mammalian cell systems as being too complicated, labor intensive, and tedious to serve as a source for tool proteins in industrial research and academia. Over the past decade, these attempts have been refined and optimized, giving rise to expression protocols applicable in every lab in dependence on available tools, equipment, and envisaged outcome. This chapter summarizes the development of transient expression technologies over the past decade up to its current status and provides an outlook into what may be the future of transient technology development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237

    Article  PubMed  CAS  Google Scholar 

  2. Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  PubMed  CAS  Google Scholar 

  3. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  PubMed  CAS  Google Scholar 

  4. Geisse S (2009) Reflections on more than 10 years of TGE approaches. Protein Expr Purif 64:99–107

    Article  PubMed  CAS  Google Scholar 

  5. Raymond C, Tom R, Perret S, Moussouami P, L’Abbe D, St-Laurent G, Durocher Y (2011) A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55(1):44–51

    Google Scholar 

  6. Geisse S, Jordan M, Wurm F (2005) Large-scale transient expression of therapeutic proteins in mammalian cells. In: Smales C, James D (eds) Therapeutic proteins. Humana Press, Totowa NJ, pp 87–98

    Chapter  Google Scholar 

  7. Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into mammalian cells. Methods Enzymol 463:223–238

    Article  PubMed  CAS  Google Scholar 

  8. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72

    Article  PubMed  CAS  Google Scholar 

  9. Kishida T, Asada H, Kubo K, Sato YT, Shin-Ya M, Imanishi J, Yoshikawa K, Mazda O (2008) Pleiotrophic functions of Epstein–Barr virus nuclear antigen-1 (EBNA-1) and oriP differentially contribute to the efficacy of transfection/expression of exogenous gene in mammalian cells. J Biotechnol 133:201–207

    Article  PubMed  CAS  Google Scholar 

  10. Norseen J, Thomae A, Sridharan V, Aiyar A, Schepers A, Lieberman PM (2008) RNA-dependent recruitment of the origin recognition complex. EMBO J 27:3024–3035

    Article  PubMed  CAS  Google Scholar 

  11. Prasad TK, Rao NM (2005) The role of plasmid constructs containing the SV40 DNA nuclear-targeting sequence in cationic lipid-mediated DNA delivery. Cell Mol Biol Lett 10:203–215

    PubMed  CAS  Google Scholar 

  12. Wang S, Frappier L (2009) Nucleosome assembly proteins bind to Epstein–Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. J Virol 83:11704–11714

    Article  PubMed  CAS  Google Scholar 

  13. Cho MS, Yee H, Chan S (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci 9:631–638

    Article  PubMed  CAS  Google Scholar 

  14. Cho M-S, Yee H, Brown C, Jeang K-T, Cahn S (2001) An oriP expression vector containing the HIV Tat/TAR transactivation axis produces high levels of protein expression in mammalian cells. Cytotechnology 37:23–30

    Article  PubMed  CAS  Google Scholar 

  15. Liu C, Dalby B, Chen W, Kilzer JM, Chiou HC (2008) Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol 39:141–153

    Article  PubMed  CAS  Google Scholar 

  16. Laengle-Rouault F, Patzel V, Benavente A, Taillez M, Silvestre N, Bompard A, Sczakiel G, Jacobs E, Rittner K (1998) Up to 100-fold increase of apparent gene expression in the presence of Epstein–Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. J Virol 72:6181–6185

    Google Scholar 

  17. Mairhofer J, Grabherr R (2008) Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA. Mol Biotechnol 39:97–104

    Article  PubMed  CAS  Google Scholar 

  18. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    Article  PubMed  Google Scholar 

  19. Parham J, Kost T, Hutchins J (2001) Effects of pCIneo and pCEP4 expression vectors on transient and stable protein production in human and simian cell lines. Cytotechnology 35:181–187

    Article  PubMed  CAS  Google Scholar 

  20. Berntzen G, Lunde E, Flobakk M, Andersen JT, Lauvrak V, Sandlie I (2005) Prolonged and increased expression of soluble Fc receptors, IgG and a TCR-Ig fusion protein by transiently transfected adherent 293E cells. J Immunol Methods 298:93–104

    Article  PubMed  CAS  Google Scholar 

  21. Durocher Y, Loignon M (2011) US Patent Application Publication US2011/0039339 A1

    Google Scholar 

  22. Silla T, Haal I, Geimanen J, Janikson K, Abroi A, Ustav E, Ustav M (2005) Episomal maintenance of plasmids with hybrid origins in mouse cells. J Virol 79:15277–15288

    Article  PubMed  CAS  Google Scholar 

  23. Codamo J, Munro TP, Hughes BS, Song M, Gray PP (2011) Enhanced CHO cell-based transient gene expression with the Epi-CHO expression system. Mol Biotechnol 48:109–115

    Article  PubMed  CAS  Google Scholar 

  24. Backliwal G, Hildinger M, Kuettel I, Delegrange F, Hacker DL, Wurm FM (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189

    Article  PubMed  CAS  Google Scholar 

  25. Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153:22–26

    Article  PubMed  CAS  Google Scholar 

  26. Backliwal G, Hildinger M, Chenuet S, de Jesus M, Wurm FM (2008) Coexpression of acidic fibroblast growth factor enhances specific productivity and antibody titers in transiently transfected HEK293 cells. N Biotechnol 25:162–166

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Stettler M, De Sanctis D, Perrone M, Parolini N, Discacciati M, De Jesus M, Hacker D, Quarteroni A, Wurm F (2010) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53

    PubMed  Google Scholar 

  28. Pichler J, Galosy S, Mott J, Borth N (2011) Selection of CHO host cell subclones with increased specific antibody production rates by repeated cycles of transient transfection and cell sorting. Biotechnol Bioeng 108:386–394

    Article  PubMed  CAS  Google Scholar 

  29. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  30. Derouazi M, Girard P, Fv T, Iglesias K, Muller N, Bertschinger M, Wurm FM (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng 87:537–545

    Article  PubMed  CAS  Google Scholar 

  31. Galbraith DJ, Tait AS, Racher AJ, Birch JR, James DC (2006) Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol Prog 22:753–762

    Article  PubMed  CAS  Google Scholar 

  32. Huh SH, Do HJ, Lim HY, Kim DK, Choi SJ, Song H, Kim NH, Park JK, Chang WK, Chung HM, Kim JH (2007) Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals 35:165–171

    Article  PubMed  CAS  Google Scholar 

  33. Sun X, Hia HC, Goh PE, Yap MG (2008) High-density transient gene expression in suspension-adapted 293 EBNA1 cells. Biotechnol Bioeng 99:108–116

    Article  PubMed  CAS  Google Scholar 

  34. Chenuet S, Martinet D, Besuchet-Schmutz N, Wicht M, Jaccard N, Bon AC, Derouazi M, Hacker DL, Beckmann JS, Wurm FM (2008) Calcium phosphate transfection generates mammalian recombinant cell lines with higher specific productivity than polyfection. Biotechnol Bioeng 101:937–945

    Article  PubMed  CAS  Google Scholar 

  35. Kichler A, Leborgne C, Danos O (2005) Dilution of reporter gene with stuffer DNA does not alter the transfection efficiency of polyethylenimines. J Gene Med 7:1459–1467

    Article  PubMed  CAS  Google Scholar 

  36. Backliwal G, Hildinger M, Hasija V, Wurm FM (2008) High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnol Bioeng 99:721–727

    Article  PubMed  CAS  Google Scholar 

  37. Fliedl L, Kaisermayer C (2011) Transient gene expression in HEK293 and vero cells immobilised on microcarriers. J Biotechnol 153:15–21

    Article  PubMed  CAS  Google Scholar 

  38. Bertschinger M, Backliwal G, Schertenleib A, Jordan M, Hacker DL, Wurm FM (2006) Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. J Control Release 116:96–104

    Article  PubMed  CAS  Google Scholar 

  39. Bertschinger M, Schertenleib A, Cevey J, Hacker D, Wurm F (2008) The kinetics of polyethylenimine-mediated transfection in suspension culture of Chinese hamster ovary cells. Mol Biotechnol 40:136–143

    Article  PubMed  CAS  Google Scholar 

  40. Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103:542–551

    Article  PubMed  CAS  Google Scholar 

  41. Eberhardy SR, Radzniak L, Liu Z (2009) Iron (III) citrate inhibits polyethylenimine-mediated transient transfection of Chinese hamster ovary cells in serum-free medium. Cytotechnology 60:1–9

    Article  CAS  Google Scholar 

  42. Tuvesson O, Uhe C, Rozkov A, Lullau E (2008) Development of a generic transient transfection process at 100 L scale. Cytotechnology 56:123–136

    Article  PubMed  CAS  Google Scholar 

  43. Muller N, Girard P, Hacker DL, Jordan M, Wurm FM (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89:400–406

    Article  PubMed  CAS  Google Scholar 

  44. Bollin F, Dechavanne V, Chevalet L (2011) Design of experiment in CHO and HEK transient transfection condition optimization. Protein Expr Purif 78:61–68

    Article  PubMed  CAS  Google Scholar 

  45. Haldankar R, Danqing L, Saremi Z, Baikalov C, Deshpande R (2006) Serum-free suspension large-scale transient transfection of CHO cells in wave bioreactors. Mol Biotechnol 34:191–199

    Article  PubMed  CAS  Google Scholar 

  46. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58:487–499

    Article  PubMed  CAS  Google Scholar 

  47. Jiang HL, Kim TH, Kim YK, Park IY, Cho MH, Cho CS (2008) Efficient gene delivery using chitosan–polyethylenimine hybrid systems. Biomed Mater 3:25013

    Article  Google Scholar 

  48. Kusumoto K, Akao T, Mizuki E, Nakamura O (2006) Gene transfer effects on various cationic amphiphiles in CHO cells. Cytotechnology 51:57–66

    Article  PubMed  CAS  Google Scholar 

  49. Stettler M, Zhang X, Hacker DL, Md J, Wurm FM (2007) Novel orbital shake bioreactors for transient production of CHO derived IgGs. Biotechnol Prog 23:1340–1346

    Article  PubMed  CAS  Google Scholar 

  50. Chapple SD, Crofts AM, Shadbolt SP, McCafferty J, Dyson MR (2006) Multiplexed expression and screening for recombinant protein production in mammalian cells. BMC Biotechnol 6:49

    Article  PubMed  Google Scholar 

  51. Zhao Y, Bishop B, Clay JE, Lu W, Jones M, Daenke S, Siebold C, Stuart DI, Yvonne Jones E, Radu Aricescu A (2011) Automation of large scale transient protein expression in mammalian cells. J Struct Biol 175(2):209–215

    Google Scholar 

  52. Xia W, Bringmann P, McClary J, Jones PP, Manzana W, Zhu Y, Wang S, Liu Y, Harvey S, Madlansacay MR, McLean K, Rosser MP, MacRobbie J, Olsen CL, Cobb RR (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expr Purif 45:115–124

    Article  PubMed  CAS  Google Scholar 

  53. Mariati Ng YK, Chao SH, Yap MG, Yang Y (2010) Evaluating regulatory elements of human cytomegalovirus major immediate early gene for enhancing transgene expression levels in CHO K1 and HEK293 cells. J Biotechnol 147:160–163

    Article  Google Scholar 

  54. Mariati Ho SC, Yap MG, Yang Y (2010) Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells. Protein Expr Purif 69:9–15

    Article  Google Scholar 

  55. Klein R, Ruttkowski B, Knapp E, Salmons B, Gunzburg WH, Hohenadl C (2006) WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene 372:153–161

    Article  PubMed  CAS  Google Scholar 

  56. Kim K-S, Kim M, Moon J, Jeong M, Kim J, Lee G, Myung P-K, Hong H (2009) Enhancement of recombinant antibody production in HEK293E cells by WPRE. Biotechnol Bioproc Eng 14:633–638

    Article  CAS  Google Scholar 

  57. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96

    Article  PubMed  Google Scholar 

  58. Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24:137–142

    Article  PubMed  CAS  Google Scholar 

  59. Harraghy N, Regamey A, Girod PA, Mermod N (2011) Identification of a potent MAR element from the mouse genome and assessment of its activity in stable and transient transfections. J Biotechnol 154:11–20

    Article  PubMed  CAS  Google Scholar 

  60. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010:479364

    Google Scholar 

  61. Wulhfard S, Baldi L, Hacker DL, Wurm F (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol 148:128–132

    Article  PubMed  CAS  Google Scholar 

  62. Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194

    Article  PubMed  CAS  Google Scholar 

  63. Yee JC, de Leon Gatti M, Philp RJ, Yap M, Hu WS (2008) Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng 99:1186–1204

    Article  PubMed  CAS  Google Scholar 

  64. Allen MJ, Boyce JP, Trentalange MT, Treiber DL, Rasmussen B, Tillotson B, Davis R, Reddy P (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol Bioeng 100:1193–1204

    Article  PubMed  CAS  Google Scholar 

  65. Hwang SO, Lee GM (2009) Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells. J Biotechnol 139:89–94

    Article  PubMed  CAS  Google Scholar 

  66. Chen J, Ghazawi FM, Bakkar W, Li Q (2006) Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B. Mol Cancer 5:71

    Article  PubMed  CAS  Google Scholar 

  67. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142

    PubMed  Google Scholar 

  68. Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ (2005) Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol 25:9419–9426

    Article  PubMed  CAS  Google Scholar 

  69. Fox SR, Yap MX, Yap MG, Wang DI (2005) Active hypothermic growth: a novel means for increasing total interferon-gamma production by Chinese-hamster ovary cells. Biotechnol Appl Biochem 41:265–272

    Article  PubMed  CAS  Google Scholar 

  70. Wulhfard S, Tissot S, Bouchet S, Cevey J, De Jesus M, Hacker DL, Wurm FM (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog 24:458–465

    Article  PubMed  CAS  Google Scholar 

  71. Han YK, Koo TY, Lee GM (2009) Enhanced interferon-beta production by CHO cells through elevated osmolality and reduced culture temperature. Biotechnol Prog 25:1440–1447

    Article  PubMed  CAS  Google Scholar 

  72. Pham PL, Perret S, Cass B, Carpentier E, St-Laurent G, Bisson L, Kamen A, Durocher Y (2005) Transient gene expression in HEK293 cells: peptone addition posttransfection improves recombinant protein synthesis. Biotechnol Bioeng 90:332–344

    Article  PubMed  CAS  Google Scholar 

  73. Sun X, Goh PE, Wong KT, Mori T, Yap MG (2006) Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnol Lett 28:843–848

    Article  PubMed  CAS  Google Scholar 

  74. Sandberg H, Lutkemeyer D, Kuprin S, Wrangel M, Almstedt A, Persson P, Ek V, Mikaelsson M (2006) Mapping and partial characterization of proteases expressed by a CHO production cell line. Biotechnol Bioeng 95:961–971

    Article  PubMed  CAS  Google Scholar 

  75. Robert F, Bierau H, Rossi M, Agugiaro D, Soranzo T, Broly H, Mitchell-Logean C (2009) Degradation of an Fc-fusion recombinant protein by host cell proteases: identification of a CHO cathepsin D protease. Biotechnol Bioeng 104:1132–1141

    Article  PubMed  CAS  Google Scholar 

  76. Andersen CR, Nielsen LS, Baer A, Tolstrup AB, Weilguny D (2011) Efficient expression from one CMV enhancer controlling two core promoters. Mol Biotechnol 48:128–137

    Article  PubMed  CAS  Google Scholar 

  77. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133

    Article  PubMed  CAS  Google Scholar 

  78. Bentley KJ, Gewert R, Harris WJ (1998) Differential efficiency of expression of humanized antibodies in transient transfected mammalian cells. Hybridoma 17:559–567

    Article  PubMed  CAS  Google Scholar 

  79. Nettleship JE, Ren J, Rahman N, Berrow NS, Hatherley D, Barclay AN, Owens RJ (2008) A pipeline for the production of antibody fragments for structural studies using transient expression in HEK 293T cells. Protein Expr Purif 62:83–89

    Article  PubMed  CAS  Google Scholar 

  80. Zhao Y, Gutshall L, Jiang H, Baker A, Beil E, Obmolova G, Carton J, Taudte S, Amegadzie B (2009) Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: papain digestion of mAb and transient expression in mammalian cells. Protein Expr Purif 67:182–189

    Article  PubMed  CAS  Google Scholar 

  81. Zhang J, Liu X, Bell A, To R, Baral TN, Azizi A, Li J, Cass B, Durocher Y (2009) Transient expression and purification of chimeric heavy chain antibodies. Protein Expr Purif 65:77–82

    Article  PubMed  CAS  Google Scholar 

  82. Haack A, Schmitt C, Poller W, Oldenburg J, Hanfland P, Brackmann HH, Schwaab R (1999) Analysis of expression kinetics and activity of a new B-domain truncated and full-length FVIII protein in three different cell lines. Ann Hematol 78:111–116

    Article  PubMed  CAS  Google Scholar 

  83. Gaudry JP, Arod C, Sauvage C, Busso S, Dupraz P, Pankiewicz R, Antonsson B (2008) Purification of the extracellular domain of the membrane protein GlialCAM expressed in HEK and CHO cells and comparison of the glycosylation. Protein Expr Purif 58:94–102

    Article  PubMed  CAS  Google Scholar 

  84. Van den Nieuwenhof IM, Koistinen H, Easton RL, Koistinen R, Kamarainen M, Morris HR, Van Die I, Seppala M, Dell A, Van den Eijnden DH (2000) Recombinant glycodelin carrying the same type of glycan structures as contraceptive glycodelin-A can be produced in human kidney 293 cells but not in Chinese hamster ovary cells. Eur J Biochem 267:4753–4762

    Article  PubMed  Google Scholar 

  85. Suen KF, Turner MS, Gao F, Liu B, Althage A, Slavin A, Ou W, Zuo E, Eckart M, Ogawa T, Yamada M, Tuntland T, Harris JL, Trauger JW (2010) Transient expression of an IL-23R extracellular domain Fc fusion protein in CHO vs. HEK cells results in improved plasma exposure. Protein Expr Purif 71:96–102

    Article  PubMed  CAS  Google Scholar 

  86. Tchoudakova A, Hensel F, Murillo A, Eng B, Foley M, Smith L, Schoenen F, Hildebrand A, Kelter AR, Ilag LL, Vollmers HP, Brandlein S, McIninch J, Chon J, Lee G, Cacciuttolo M (2009) High level expression of functional human IgMs in human PER.C6 cells. MAbs 1:163–171

    Article  PubMed  Google Scholar 

  87. Jones D, Kroos N, Anema R, van Montfort B, Vooys A, van der Kraats S, van der Helm E, Smits S, Schouten J, Brouwer K, Lagerwerf F, van Berkel P, Opstelten DJ, Logtenberg T, Bout A (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19:163–168

    Article  PubMed  CAS  Google Scholar 

  88. Niklas J, Schrader E, Sandig V, Noll T, Heinzle E (2011) Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess Biosyst Eng 34:533–545

    Article  PubMed  CAS  Google Scholar 

  89. Schiedner G, Hertel S, Bialek C, Kewes H, Waschutza G, Volpers C (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13

    Article  PubMed  Google Scholar 

  90. Brown SW, Mehtali M (2010) The avian EB66(R) cell line, application to vaccines, and therapeutic protein production. PDA J Pharm Sci Technol 64:419–425

    PubMed  CAS  Google Scholar 

  91. Kramer O, Klausing S, Noll T (2010) Methods in mammalian cell line engineering: from random mutagenesis to sequence-specific approaches. Appl Microbiol Biotechnol 88:425–436

    Article  PubMed  Google Scholar 

  92. Johnson KC, Jacob NM, Nissom PM, Hackl M, Lee LH, Yap M, Hu WS (2011) Conserved microRNAs in Chinese hamster ovary cell lines. Biotechnol Bioeng 108:475–480

    Article  PubMed  CAS  Google Scholar 

  93. Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Siederdissen CH, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153:62–75

    Article  PubMed  CAS  Google Scholar 

  94. Barron N, Sanchez N, Kelly P, Clynes M (2011) MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 33:11–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our team in the lab for the generation of the experimental data and our colleague Dr. Peter LeMotte, Novartis Cambridge, MA, for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Geisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Geisse, S., Voedisch, B. (2012). Transient Expression Technologies: Past, Present, and Future. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics