Skip to main content

Olfactory-Evoked Activity Assay for Larval Zebrafish

  • Protocol
  • First Online:
Zebrafish Protocols for Neurobehavioral Research

Part of the book series: Neuromethods ((NM,volume 66))

Abstract

Olfactory responses develop early in larval zebrafish and are important throughout life to direct physiological and behavioral responses. Responses are evoked by odorants, which act as ligands to the olfactory neuron receptors. A response of immediate relevance is the detection of food odors (i.e., amino acids) which fish have an excellent ability to detect. Characterizing responses of fish to distinct odorants, especially during developmental stages, allows for a robust endpoint to compare to genetically or chemically altered organisms. The following protocol describes the use of automated video analysis to detect changes in olfactory function apparent through a simple behavioral endpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braubach O, Wood H, Gadbois S, Fine A, Croll R (2009) Olfactory conditioning in the zebrafish (Danio rerio). Behav Brain Res 198:190–198

    Article  PubMed  Google Scholar 

  2. Michel W, Derbidge D (1997) Evidence of distinct amino acid and bile salt receptors in the olfactory system of the zebrafish, Danio rerio. Brain Res 764:179–187

    Article  PubMed  CAS  Google Scholar 

  3. Tierney K (2011) Behavioral assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta 1812:381–389

    Article  PubMed  CAS  Google Scholar 

  4. Lindsay SM, Vogt RG (2004) Behavioral responses of newly hatched zebrafish (Danio rerio) to amino acid chemostimulants. Chem Senses 29:93–100

    Article  PubMed  Google Scholar 

  5. Yoshihara Y (2009) Molecular genetic dissection of the zebrafish olfactory system. Chemosensory systems in mammals fishes and insects. Springer, Heidelberg, pp 1–24

    Google Scholar 

  6. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  7. Hansen A, Zeiske E (1993) Development of the olfactory organ in the zebrafish Brachydanio rerio. J Comp Neurol 333:289–300

    Article  PubMed  CAS  Google Scholar 

  8. Hansen A, Zielinski B (2005) Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34:183–208

    Article  PubMed  CAS  Google Scholar 

  9. Vitebsky A et al (2005) Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish, Danio rerio. Dev Dyn 234:229–242

    Article  PubMed  CAS  Google Scholar 

  10. Michel W, Lubomudrov L (1995) Specificity and sensitivity of the olfactory organ of the zebrafish Danio rerio. J Comp Physiol A 177:191–199

    Article  PubMed  CAS  Google Scholar 

  11. Brand M, Granato M, Nusslein-Volhard C (2002) Keeping and raising zebrafish. In: Nusslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford, UK, pp 7–37

    Google Scholar 

  12. Tierney KB et al (2010) Olfactory toxicity in fishes. Aquat Toxicol 96:2–26

    Article  PubMed  CAS  Google Scholar 

  13. Laberge F, Hara TJ (2001) Neurobiology of fish olfaction: a review. Brain Res Rev 36:46–59

    Article  PubMed  CAS  Google Scholar 

  14. Parra K, Adrian J, Gerlai R (2009) The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio). Behav Brain Res 205(2):336–341

    Article  PubMed  CAS  Google Scholar 

  15. Tierney KB, Sekela MA, Cobbler CE, Xhabija B, Gledhill M, Ananvoranich S, Zielinski BS (2011) Evidence for behavioral preference toward environmental concentrations of urban-use herbicides in a model adult fish. Environ Toxicol Chem 30(9):2046–2054. doi:10.1002/etc.588

    Article  PubMed  CAS  Google Scholar 

  16. Tiedeken J, Ramsdell J (2007) Embryonic exposure to domoic acid increases the susceptibility of zebrafish larvae to the chemical convulsant pentylenetetrazole. Environ Health Perspect 115(11):1547–1552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the gracious funding of the Canadian Wildlife Federation to KBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith B. Tierney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bhinder, G., Tierney, K.B. (2012). Olfactory-Evoked Activity Assay for Larval Zebrafish. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics