Skip to main content

Identifying Differential Histone Modification Sites from ChIP‐seq Data

  • Protocol
  • First Online:
Book cover Next Generation Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

Epigenetic modifications are critical to gene regulations and genome functions. Among different epigenetic modifications, it is of great interest to study the differential histone modification sites (DHMSs), which contribute to the epigenetic dynamics and the gene regulations among various cell-types or environmental responses. ChIP-seq is a robust and comprehensive approach to capture the histone modifications at the whole genome scale. By comparing two histone modification ChIP-seq libraries, the DHMSs are potentially identifiable. With this aim, we proposed an approach called ChIPDiff for the genome-wide comparison of histone modification sites identified by ChIP-seq (Xu, Wei, Lin et al., Bioinformatics 24:2344–2349, 2008). The approach employs a hidden Markov model (HMM) to infer the states of histone modification changes at each genomic location. We evaluated the performance of ChIPDiff by comparing the H3K27me3 modification sites between mouse embryonic stem cell (ESC) and neural progenitor cell (NPC). We demonstrated that the H3K27me3 DHMSs identified by our approach are of high sensitivity, specificity, and technical reproducibility. ChIPDiff was further applied to uncover the differential H3K4me3 and H3K36me3 sites between different cell states. The result showed significant correlation between the histone modification states and the gene expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nature Rev Mol Cell Biol 6:838–849

    Article  CAS  Google Scholar 

  2. Boyer LA, Plath K, Zeitlinger J et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  4. Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nature Genet 39:157–158

    Article  PubMed  CAS  Google Scholar 

  5. McGarvey KM, Fahrner JA, Greene E et al (2006) Silenced tumor suppressor genes reactivated by DNA demthylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549

    Article  PubMed  CAS  Google Scholar 

  6. Impey S, McCorkle SR, Cha-Molstad H et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054

    PubMed  CAS  Google Scholar 

  7. Wei CL, Wu Q, Vega VB et al (2006) A global mapping of p53 transcription factor binding sites in the human genome. Cell 124:207–219

    Article  PubMed  CAS  Google Scholar 

  8. Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genom Hum Genet 7:81–102

    Article  Google Scholar 

  9. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  10. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  11. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nature Methods 4:613–614

    Article  PubMed  CAS  Google Scholar 

  12. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

  13. http://genome.ucsc.edu/

  14. Quackenbush J. (2002) Microarray data normalization and transformation. Nature Genet 32:496–501

    Article  PubMed  CAS  Google Scholar 

  15. Xu H, Wei CL, Lin F et al. (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics 24:2344–2349

    Article  PubMed  CAS  Google Scholar 

  16. http://cmb.gis.a-star.edu.sg/ChIPSeq/paperChIPDiff.htm

  17. Conti L, Pollard SM, Gorba T et al (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283

    Article  PubMed  Google Scholar 

  18. http://www.broad.mit.edu/seq_platform/chip

  19. Bernstein BE, Kamal M, Lindblad-Toh K et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181

    Article  PubMed  CAS  Google Scholar 

  20. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  21. Gan Q, Yoshida T, McDonald OG et al (2007) Concise review: epigenetic mechanism contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cell 25:2–9

    Article  CAS  Google Scholar 

  22. Li W, Meyer CA, Liu XS (2005) A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics (ISMB2005) 21 Suppl 1:i274-i282

    Google Scholar 

  23. Welch LR (2003) Hidden Markov Models and the Baum-Welch Algorithm. IEEE Information Theory Society Newsletter 53:1–1

    Google Scholar 

  24. Guenther MG, Levine SS, Boyer LA et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  PubMed  CAS  Google Scholar 

  25. Zhao XD, Han X, Chew JL et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298

    Article  PubMed  CAS  Google Scholar 

  26. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–504

    Article  PubMed  CAS  Google Scholar 

  27. Ding C, Cantor CR (2004) Quantitative analysis of nucleic acids – the last few years of progress. J of Biochem and Mol Bio 37:1–10

    Article  CAS  Google Scholar 

  28. Xu H, Handoko L, Wei X et al (2010) A Signal-noise Model for Significance Analysis of ChIP-seq with Negative Control. Bioinformatics 26:1199–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing‐Kin Sung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xu, H., Sung, W. (2012). Identifying Differential Histone Modification Sites from ChIP‐seq Data. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics