Skip to main content

Nonhomogeneous Dynamic Bayesian Networks in Systems Biology

  • Protocol
  • First Online:
Next Generation Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

Dynamic Bayesian networks (DBNs) have received increasing attention from the computational biology community as models of gene regulatory networks. However, conventional DBNs are based on the homogeneous Markov assumption and cannot deal with inhomogeneity and nonstationarity in temporal processes. The present chapter provides a detailed discussion of how the homogeneity assumption can be relaxed. The improved method is evaluated on simulated data, where the network structure is allowed to change with time, and on gene expression time series during morphogenesis in Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson JW, Hartemink AJ (2009) Non-stationary dynamic Bayesian networks. In Koller D, Schuurmans D, Bengio Y et al editors, Advances in Neural Information Processing Systems (NIPS), volume 21, 1369–1376. Morgan Kaufmann Publishers.

    Google Scholar 

  2. Grzegorczyk M, Husmeier D (2009) Non-stationary continuous dynamic Bayesian networks. In Bengio Y, Schuurmans D, Lafferty J et al editors, Advances in Neural Information Processing Systems (NIPS), volume 22, 682–690.

    Google Scholar 

  3. Ahmed A, Xing EP (2009) Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences 106:11878–11883.

    Article  CAS  Google Scholar 

  4. Talih M, Hengartner N (2005) Structural learning with time-varying components: Tracking the cross-section of financial time series. Journal of the Royal Statistical Society B 67(3):321–341.

    Article  Google Scholar 

  5. Xuan X, Murphy K (2007) Modeling changing dependency structure in multivariate time series. In Ghahramani Z editor, Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), 1055–1062. Omnipress.

    Google Scholar 

  6. Lèbre S (2007) Stochastic process analysis for Genomics and Dynamic Bayesian Networks inference. Ph.D. thesis, Université d’Evry-Val-d’Essonne, France.

    Google Scholar 

  7. Lèbre S, Becq J, Devaux F et al. (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Systems Biology 4(130).

    Google Scholar 

  8. Kolar M, Song L, Xing E (2009) Sparsistent learning of varying-coefficient models with structural changes. In Bengio Y, Schuurmans D, Lafferty J et al editors, Advances in Neural Information Processing Systems (NIPS), volume 22, 1006–1014.

    Google Scholar 

  9. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16(6):750–759.

    CAS  Google Scholar 

  10. Arbeitman M, Furlong E, Imam F et al. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590):2270–2275.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17):2129.

    Article  PubMed  CAS  Google Scholar 

  12. Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of drosophila melanogaster. Science 302:1727–1736.

    Article  PubMed  CAS  Google Scholar 

  13. Yu J, Pacifico S, Liu G et al. (2008) DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9(461).

    Google Scholar 

  14. Guo F, Hanneke S, Fu W et al. (2007) Recovering temporally rewiring networks: A model-based approach. In Proceedings of the 24th international conference on Machine learning page 328. ACM.

    Google Scholar 

  15. Andrieu C, Doucet A (1999) Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Transactions on Signal Processing 47(10):2667–2676.

    Article  Google Scholar 

  16. Green P (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732.

    Article  Google Scholar 

  17. Werhli AV, Husmeier D (2008) Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. Journal of Bioinformatics and Computational Biology 6(3):543–572.

    Article  PubMed  CAS  Google Scholar 

  18. Elgar S, Han J, Taylor M (2008) mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proceedings of the National Academy of Sciences 105(3):918.

    Article  CAS  Google Scholar 

  19. http://cran.r-project.org.

  20. Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Statistical science 7(4):457–472.

    Article  Google Scholar 

  21. Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the roc curve. Machine Learning 77:103–123.

    Article  Google Scholar 

  22. Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In ICML ’06: Proceedings of the 23rd international conference on Machine Learning 233–240. ACM, New York, NY, USA. ISBN 1-59593-383-2. doi: http://doi.acm.org/10.1145/1143844.1143874.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Husmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lèbre, S., Dondelinger, F., Husmeier, D. (2012). Nonhomogeneous Dynamic Bayesian Networks in Systems Biology. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics