Skip to main content

Polyadenylation State Microarray (PASTA) Analysis

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gebauer, F., and Hentze, M. W. (2004) Molecular mechanisms of translational control. Nat. Rev. Mol. Cell. Biol. 5, 827–835.

    Article  PubMed  CAS  Google Scholar 

  2. Beach, D. L., and Keene, J. D. (2008) Ribotrap: targeted purification of RNA-specific RNPs from cell lysates through immunoaffinity precipitation to identify regulatory proteins and RNAs. Methods Mol. Biol. 419, 69–91.

    Article  PubMed  CAS  Google Scholar 

  3. Keene, J. D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543.

    Article  PubMed  CAS  Google Scholar 

  4. Mathews, M. B., Sonenberg, N., and Hershey, J. W. (2007) Origins and principles of translational control. In: Mathews, M. B., Sonenberg N., and Hershey J. B. W. (eds.), Translational Control in Biology and Medicine (pp. 1–40). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  5. Gallie, D. R. (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116.

    Article  PubMed  CAS  Google Scholar 

  6. Tarun, S. Z., Jr., and Sachs, A. B. (1995) A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 9, 2997–3007.

    Article  PubMed  CAS  Google Scholar 

  7. Preiss, T., and Hentze, M. W. (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520.

    Article  PubMed  CAS  Google Scholar 

  8. Gebauer, F., Corona, D. F., Preiss, T., Becker, P. B., and Hentze, M. W. (1999) Translational control of dosage compensation in Drosophila by Sex- lethal: cooperative silencing via the 5' and 3' UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J. 18, 6146–6154.

    Article  PubMed  CAS  Google Scholar 

  9. Bergamini, G., Preiss, T., and Hentze, M. W. (2000) Picornavirus IRESes and the poly(A) tail jointly promote cap- independent translation in a mammalian cell-free system. RNA 6, 1781–1790.

    Article  PubMed  CAS  Google Scholar 

  10. Jacobson, A., and Favreau, M. (1983) Possible involvement of poly(A) in protein synthesis. Nucleic Acids Res. 11, 6353–6368.

    Article  PubMed  CAS  Google Scholar 

  11. Amrani, N., Ghosh, S., Mangus, D. A., and Jacobson, A. (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453, 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  12. Tarun, S. Z., Jr., and Sachs, A. B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177.

    PubMed  CAS  Google Scholar 

  13. Imataka, H., Gradi, A., and Sonenberg, N. (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489.

    Article  PubMed  CAS  Google Scholar 

  14. Richter, J. D., and Sonenberg, N. (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480.

    Article  PubMed  CAS  Google Scholar 

  15. Hentze, M. W., Gebauer, F., and Preiss, T. (2007) Cis-regulatory sequences and trans-acting factors in translational control. In: Mathews M. B., Sonenberg N., and Hershey J. W. B. (eds.), Translational Control in Biology and Medicine (pp. 269–295). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  16. Goldstrohm, A. C., and Wickens, M. (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell. Biol. 9, 337–344.

    Article  PubMed  CAS  Google Scholar 

  17. Humphreys, D. T., Westman, B. J., Martin, D. I., and Preiss, T. (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966.

    Article  PubMed  CAS  Google Scholar 

  18. Standart, N., and Jackson, R. J. (2007) MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev. 21, 1975–1982.

    Article  PubMed  CAS  Google Scholar 

  19. Beilharz, T. H., Humphreys, D. T., and Preiss, T. (2009) miRNA effects on mRNA closed-loop formation during translation initiation. In: Rhoads R. E. (ed.), miRNA Regulation of the Translational Machinery (pp. 99–112). Berlin: Springer.

    Google Scholar 

  20. Eulalio, A., Huntzinger, E., Nishihara, T., Rehwinkel, J., Fauser, M., and Izaurralde, E. (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32.

    Article  PubMed  CAS  Google Scholar 

  21. Beilharz, T. H., and Preiss, T. (2009) Transcriptome-wide measurement of mRNA polyadenylation state. Methods 48, 294–300.

    Article  PubMed  CAS  Google Scholar 

  22. Beilharz, T. H., and Preiss, T. (2007) Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13, 982–997.

    Article  PubMed  CAS  Google Scholar 

  23. Lackner, D. H., Beilharz, T. H., Marguerat, S., et al. (2007) A network of multiple regulatory layers shapes gene expression in fission yeast. Mol. Cell 26, 145–155.

    Article  PubMed  CAS  Google Scholar 

  24. Beilharz, T. H., and Preiss, T. (2004) Translational profiling: the genome-wide measure of the nascent proteome. Brief Funct. Genomic Proteomic 3, 103–111.

    Article  PubMed  CAS  Google Scholar 

  25. Mata, J., Marguerat, S., and Bahler, J. (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci. 30, 506–514.

    Article  PubMed  CAS  Google Scholar 

  26. Thermann, R., and Hentze, M. W. (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878.

    Article  PubMed  CAS  Google Scholar 

  27. Binder, R., Horowitz, J. A., Basilion, J. P., Koeller, D. M., Klausner, R. D., and Harford, J. B. (1994) Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3' UTR and does not involve poly(A) tail shortening. EMBO J. 13, 1969–1980.

    PubMed  CAS  Google Scholar 

  28. Palatnik, C. M., Storti, R. V., and Jacobson, A. (1979) Fractionation and functional analysis of newly synthesized and decaying messenger RNAs from vegetative cells of Dictyostelium discoideum. J. Mol. Biol. 128, 371–395.

    Article  PubMed  CAS  Google Scholar 

  29. Minvielle-Sebastia, L., Winsor, B., Bonneaud, N., and Lacroute, F. (1991) Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell. Biol. 11, 3075–3087.

    PubMed  CAS  Google Scholar 

  30. Steiger, M. A., and Parker, R. (2002) Analyzing mRNA decay in Saccharomyces cerevisiae. Methods Enzymol. 351, 648–660.

    Article  PubMed  CAS  Google Scholar 

  31. Sallés, F. J., and Strickland, S. (1995) Rapid and sensitive analysis of mRNA polyadenylation states by PCR. PCR Methods Appl. 4, 317–321.

    PubMed  Google Scholar 

  32. Clancy, J. L., Nousch, M., Humphreys, D. T., Westman, B. J., Beilharz, T. H., and Preiss, T. (2007) Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol. 431, 83–111.

    Article  PubMed  CAS  Google Scholar 

  33. Woolstencroft, R. N., Beilharz, T. H., Cook, M. A., Preiss, T., Durocher, D., and Tyers, M. (2006) Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length. J. Cell. Sci. 119, 5178–5192.

    Article  PubMed  CAS  Google Scholar 

  34. Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L., and Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386.

    Article  PubMed  CAS  Google Scholar 

  35. Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D., and Parker, R. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  36. Du, L., and Richter, J. D. (2005) Activity-dependent polyadenylation in neurons. RNA 11, 1340–1347.

    Article  PubMed  CAS  Google Scholar 

  37. Graindorge, A., Thuret, R., Pollet, N., Osborne, H. B., and Audic, Y. (2006) Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray. Nucleic Acids Res. 34, 986–995.

    Article  PubMed  CAS  Google Scholar 

  38. Meijer, H. A., Bushell, M., Hill, K., et al. (2007) A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res. 35, e132.

    Article  PubMed  Google Scholar 

  39. Salles, F. J., Richards, W. G., and Strickland, S. (1999) Assaying the polyadenylation state of mRNAs. Methods 17, 38–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jürg Bähler and Daniel Lackner for their input to PASTA method development and application. This work was supported by the Victor Chang Cardiac Research Institute, the Australian Research Council, the National Health and Medical Research Council of Australia, and the Sylvia and Charles Viertel Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Preiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Beilharz, T.H., Preiss, T. (2011). Polyadenylation State Microarray (PASTA) Analysis. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics