Skip to main content

Enrichment of Unstable Non-coding RNAs and Their Genome-Wide Identification

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Cryptic unstable transcripts (CUTs) have been recently described as a major class of non-coding RNAs. These transcripts are, however, extremely unstable in normal cells and their analyzes pose specific technical problems. In this chapter, after a brief introduction discussing general aspects associated with the analysis of non-coding RNAs, we provide details of methods to enrich, map, and quantify this unconventional class of transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Liu, C. L., Storey, J. D, Tibshirani, R. J., Herschlag, D., and Brown, P. O. (2002) Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99, 5860–5865.

    Article  PubMed  CAS  Google Scholar 

  2. Wyers, F., Rougemaille, M., Badis, G., et al. (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737.

    Article  PubMed  CAS  Google Scholar 

  3. Dujon, B. (2005) Hemiascomycetous yeasts at the forefront of comparative genomics. Curr. Opin. Genet. Dev. 15, 614–620.

    Article  PubMed  CAS  Google Scholar 

  4. Lowe, T. M., and Eddy, S. R. (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  5. Schattner, P., Decatur, W. A., Davis, C. A., Ares, M., Jr., Fournier, M. J., and Lowe, T. M. (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res. 32, 4281–4296.

    Article  PubMed  CAS  Google Scholar 

  6. Torchet, C., Badis, G., Devaux, F., Costanzo, G., Werner, M., and Jacquier, A. (2005) The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. RNA 11, 928–938.

    Article  PubMed  CAS  Google Scholar 

  7. Martens, J. A., Wu, P. Y., and Winston, F. (2005) Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19, 2695–2704.

    Article  PubMed  CAS  Google Scholar 

  8. Berretta, J., Pinskaya, M., and Morillon, A. (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev. 22, 615–626.

    Article  PubMed  CAS  Google Scholar 

  9. Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G., and Stutz, F. (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131, 706–717.

    Article  PubMed  CAS  Google Scholar 

  10. Hongay, C. F., Grisafi, P. L., Galitski, T., and Fink G. R. (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127, 735–745.

    Article  PubMed  CAS  Google Scholar 

  11. Uhler, J. P., Hertel, C., and Svejstrup, J. Q. (2007) A role for noncoding transcription in activation of the yeast PHO5 gene. Proc. Natl. Acad. Sci. USA 104, 8011–8016.

    Article  PubMed  CAS  Google Scholar 

  12. David, L., Huber, W., Granovskaia, M., et al. (2006) A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103, 5320–5325.

    Article  PubMed  CAS  Google Scholar 

  13. Miura, F., Kawaguchi, N., Sese, J., et al. (2006) A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc. Natl. Acad. Sci. USA 103, 17846–17851.

    Article  PubMed  CAS  Google Scholar 

  14. Nagalakshmi, U., Wang, Z., Waern, K., et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  15. Samanta, M. P., Tongprasit, W., Sethi, H., Chin, C. S., and Stolc, V. (2006) Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway. Proc. Natl. Acad. Sci. USA 103, 4192–4197.

    Article  PubMed  CAS  Google Scholar 

  16. Davis, C. A., and Ares, M., Jr. (2006) Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103, 3262–3267.

    Article  PubMed  CAS  Google Scholar 

  17. Neil. H., Malabat, C., d’Aubenton-Carafa, Y., Xu, Z., Steinmetz, L. M., and Jacquier, A. (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  18. Xu, Z., Wei, W., Gagneur, J., et al. (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  19. Peng, W. T., Robinson, M. D., Mnaimneh, S., et al. (2003) A panoramic view of yeast noncoding RNA processing. Cell 113, 919–933.

    Article  PubMed  CAS  Google Scholar 

  20. Lister, R., O’Malley, R. C., Tonti-Filippini, J., et al. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536.

    Article  PubMed  CAS  Google Scholar 

  21. Wei, C. L., Ng, P., Chiu, K. P., et al. (2004) 5’ Long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc. Natl. Acad. Sci. USA 101, 11701–11706.

    Article  PubMed  CAS  Google Scholar 

  22. Inada, M., and Guthrie, C. (2004) Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc. Natl. Acad. Sci. USA 101, 434–439.

    Article  PubMed  CAS  Google Scholar 

  23. Oeffinger, M., Wei, K. E., Rogers, R., et al. (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 4, 951–956.

    Article  PubMed  CAS  Google Scholar 

  24. Arigo, J. T., Eyler, D. E., Carroll, K. L., and Corden, J. L. (2006) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851.

    Article  PubMed  CAS  Google Scholar 

  25. Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J., and Libri, D. (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853–864.

    Article  PubMed  CAS  Google Scholar 

  26. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032.

    Article  PubMed  CAS  Google Scholar 

  27. Velculescu, V. E., Zhang, L., Zhou, W., et al. (1997) Characterization of the yeast transcriptome. Cell 88, 243–251.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, C. Y., Lee, A., and Chanfreau, G. (2003) The roles of endonucleolytic cleavage and exonucleolytic digestion in the 5′-end processing of S. cerevisiae box C/D snoRNAs. RNA 9, 362–1370.

    Article  Google Scholar 

  29. Danin-Kreiselman, M., Lee, C. Y., and Chanfreau, G. (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol. Cell 11, 1279–1289.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Saveanu, F. Feuerbach and M. Fromont-Racine for stimulating discussions and the staff of the Genoscope (Evry) for sequencing. This work was supported by the Institut Pasteur, the CNRS, the ANR (CUT program) and the European Science Foundation (RNA quality program). H.N. is supported by the ANR (CUT program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Jacquier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Neil, H., Jacquier, A. (2011). Enrichment of Unstable Non-coding RNAs and Their Genome-Wide Identification. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics