Skip to main content

Genome-Wide Measurement of Histone H3 Replacement Dynamics in Yeast

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Chromatin plays critical roles in processes governed in different timescales – responses to environmental changes require rapid plasticity, while long-term stability through multiple cell generations requires epigenetically heritable chromatin. Understanding the dynamic behavior of chromatin is of great interest for fields ranging from transcriptional regulation through meiosis and gametogenesis. Here, we describe a protocol for measuring histone replacement rates genome wide in the budding yeast Saccharomyces cerevisiae. With suitable modifications, this protocol could be applied to other organisms, or to replacement dynamics of other DNA-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesfeld, J. M., Belitsky, J. M., Melander, C., Dervan, P. B., and Luger, K. (2002) Blocking transcription through a nucleosome with synthetic DNA ligands. J. Mol. Biol. 321, 249–263.

    Article  PubMed  CAS  Google Scholar 

  2. Izban, M. G., and Luse, D. S. (1992) Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267, 13647–13655.

    PubMed  CAS  Google Scholar 

  3. Schwabish, M. A., and Struhl, K. (2004) Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117.

    Article  PubMed  CAS  Google Scholar 

  4. Ahmad, K., and Henikoff, S. (2002) Histone H3 variants specify modes of chromatin assembly. Proc. Natl. Acad. Sci. USA 99(Suppl 4), 16477–16484.

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad, K., and Henikoff, S. (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz, B. E., and Ahmad, K. (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19, 804–814.

    Article  PubMed  CAS  Google Scholar 

  7. Adkins, M. W., Howar, S. R., and Tyler, J. K. (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657–666.

    Article  PubMed  CAS  Google Scholar 

  8. Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O., and Schreiber, S. L. (2004) Global nucleosome occupancy in yeast. Genome Biol. 5, R62.

    Article  PubMed  Google Scholar 

  9. Boeger, H., Griesenbeck, J., Strattan, J. S., and Kornberg, R. D. (2003) Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D., and Lieb, J. D. (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905.

    Article  PubMed  CAS  Google Scholar 

  11. Reinke, H., and Horz, W. (2003) Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607.

    Article  PubMed  CAS  Google Scholar 

  12. Hogan, G. J., Lee, C. K., and Lieb, J. D. (2006) Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158.

    Article  PubMed  Google Scholar 

  13. Schermer, U. J., Korber, P., and Horz, W. (2005) Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol. Cell 19, 279–285.

    Article  PubMed  CAS  Google Scholar 

  14. Choi, E. S., Shin, J. A., Kim, H. S., and Jang, Y. K. (2005) Dynamic regulation of replication independent deposition of histone H3 in fission yeast. Nucleic Acids Res. 33, 7102–7110.

    Article  PubMed  CAS  Google Scholar 

  15. Jamai, A., Imoberdorf, R. M., and Strubin, M. (2007) Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355.

    Article  PubMed  CAS  Google Scholar 

  16. Thiriet, C., and Hayes, J. J. (2005) Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev. 19, 677–682.

    Article  PubMed  CAS  Google Scholar 

  17. Dion, M. F., Kaplan, T., Kim, M., Buratowski, S., Friedman, N., and Rando, O. J. (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408.

    Article  PubMed  CAS  Google Scholar 

  18. Rufiange, A., Jacques, P. E., Bhat, W., Robert, F., and Nourani, A. (2007) Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405.

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan, T., Liu, C. L., Erkmann, J. A., et al. (2008) Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast. PLoS Genet. 4, e1000270.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

These protocols were largely developed by C.L. Liu and have been modified to meet the formatting requirements of this volume. This work was supported by grant GM079205 from National Institute of General Medical Sciences (NIGMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver J. Rando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Rando, O.J. (2011). Genome-Wide Measurement of Histone H3 Replacement Dynamics in Yeast. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics