Skip to main content

Fluorescence Fluctuation Spectroscopy and Imaging Methods for Examination of Dynamic Protein Interactions in Yeast

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Protein interactions are inherently dynamic. In no system is this more true and important than in signaling pathways, where spatial and temporal control of specific protein interactions is key to signaling specificity and timing. While genetic and biochemical interactions form a necessary and important starting point for deciphering interactions among signaling components, they struggle to provide precise information of where and when interactions occur in a live cell setting. In contrast, live cell fluorescence studies such as those outlined below are able to provide quantitative information on the strength, nature, timing, and location of homotypic and heterotypic protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, R. E., and Thorner, J. (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773, 1311–1340.

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz, M. A., and Madhani, H. D. (2004) Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38, 725–748.

    Article  PubMed  CAS  Google Scholar 

  3. Sprague, B. L., and McNally, J. G. (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84–91.

    Article  PubMed  CAS  Google Scholar 

  4. Unruh, J. R., and Gratton, E. (2008) Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera. Biophys. J. 95, 5385–5398.

    Article  PubMed  CAS  Google Scholar 

  5. Digman, M. A., Wiseman, P. W., Choi, C., Horwitz, A. R., and Gratton, E. (2009) Stoichiometry of molecular complexes at adhesions in living cells. Proc. Natl. Acad. Sci. USA 106, 2170–2175.

    Article  PubMed  CAS  Google Scholar 

  6. Kolin, D. L., and Wiseman, P. W. (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem. Biophys. 49, 141–164.

    Article  PubMed  CAS  Google Scholar 

  7. Digman, M. A., Wiseman, P. W., Horwitz, A. R., and Gratton, E. (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys. J. 96, 707–716.

    Article  PubMed  CAS  Google Scholar 

  8. Ries, J., Chiantia, S., and Schwille, P. (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys. J. 96, 1999–2008.

    Article  PubMed  CAS  Google Scholar 

  9. Schwille, P., Haupts, U., Maiti, S., and Webb, W. W. (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, Y., Tekmen, M., Hillesheim, L., Skinner, J., Wu, B., and Muller, J. D. (2005) Dual-color photon-counting histogram. Biophys. J. 88, 2177–2192.

    Article  PubMed  CAS  Google Scholar 

  11. Haustein, E., and Schwille, P. (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169.

    Article  PubMed  CAS  Google Scholar 

  12. Bacia, K., and Schwille, P. (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856.

    Article  PubMed  CAS  Google Scholar 

  13. Cheung, H. C. (1991) Resonance energy transfer. In: Lakowicz, J. R. (ed.), Topics in Fluorescence Spectroscopy (pp. 128–176). New York, NY: Plenum Press.

    Google Scholar 

  14. Mc Intyre, J., Muller, E. G., Weitzer, S., Snydsman, B. E., Davis, T. N., and Uhlmann, F. (2007) In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J. 26, 3783–3793.

    Article  PubMed  CAS  Google Scholar 

  15. Goley, E. D., Rodenbusch, S. E., Martin, A. C., and Welch, M. D. (2004) Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. Mol. Cell 16, 269–279.

    Article  PubMed  CAS  Google Scholar 

  16. Digman, M. A., Sengupta, P., Wiseman, P. W., Brown, C. M., Horwitz, A. R., and Gratton, E. (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys. J. 88, L33–L36.

    Article  PubMed  CAS  Google Scholar 

  17. Ries, J., and Schwille, P. (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys. J. 91, 1915–1924.

    Article  PubMed  CAS  Google Scholar 

  18. Sheff, M. A., and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670.

    Article  PubMed  CAS  Google Scholar 

  19. Janke, C., Magiera, M. M., Rathfelder, N., et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.

    Article  PubMed  CAS  Google Scholar 

  20. Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  21. Prein, B., Natter, K., and Kohlwein, S. D. (2000) A novel strategy for constructing N-terminal chromosomal fusions to green fluorescent protein in the yeast Saccharomyces cerevisiae. FEBS Lett. 485, 29–34.

    Article  PubMed  CAS  Google Scholar 

  22. Knop, M., Siegers, K., Pereira, G., et al. (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972.

    Article  PubMed  CAS  Google Scholar 

  23. Maeder, C. I., Maier, P., and Knop, M. (2007) A guided tour to PCR-based genomic manipulations of S. cerevisiae (PCR targeting). In: Stansfield, I., and Stark, M. (eds.), Methods in Microbiology: Yeast gene analysis (Vol. 36, pp. 55–78). London: Academic.

    Google Scholar 

  24. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  25. Tran, P. T., Paoletti, A., and Chang, F. (2004) Imaging green fluorescent protein fusions in living fission yeast cells. Methods 33, 220–225.

    Article  PubMed  CAS  Google Scholar 

  26. Edidin, M. (2003) Fluorescence resonance energy transfer: techniques for measuring molecular conformation and molecular proximity. Curr. Protoc. Immunol. Chapter 18, Unit 18.10.

    Google Scholar 

  27. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909.

    Article  PubMed  CAS  Google Scholar 

  28. Slaughter, B. D., Schwartz, J. W., and Li, R. (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc. Natl. Acad. Sci. USA 104, 20320–20325.

    Article  PubMed  CAS  Google Scholar 

  29. Elson, E. L., and Magde, D. (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27.

    Article  CAS  Google Scholar 

  30. Magde, D., Elson, E. L., and Webb, W. W. (1974) Fluorescence correlation spectroscopy. II. Experimental realization. Biopolymers 13, 29–61.

    Article  PubMed  CAS  Google Scholar 

  31. Ruttinger, S., Buschmann, V., Kramer, B., Erdmann, R., Macdonald, R., and Koberling, F. (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J. Microsc. 232, 343–352.

    Article  PubMed  CAS  Google Scholar 

  32. Daly, P. J., Page, D. J., and Compton, R. G. (1983) Mercury-plated rotating ring-disk electrode. Anal. Chem. 55, 1191–1192.

    Article  CAS  Google Scholar 

  33. Coles, B. A., and Compton, R. G. (1983) Photoelectrochemical ESR. Part I. Experimental. J. Electroanal. Chem. Intl. Electrochem. 144, 87–98.

    Article  CAS  Google Scholar 

  34. Slaughter, B. D., Huff, J. M., Wiegraebe, W., Schwartz, J. W., and Li, R. (2008) SAM domain-based protein oligomerization observed by live-cell fluorescence fluctuation spectroscopy. PLoS One 3, e1931.

    Article  PubMed  Google Scholar 

  35. Maeder, C. I., Hink, M. A., Kinkhabwala, A., Mayr, R., Bastiaens, P. I., and Knop, M. (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat. Cell Biol. 9, 1319–1326.

    Article  PubMed  CAS  Google Scholar 

  36. Rigler, R., Foldes-Papp, Z., Meyer-Almes, F. J., Sammet, C., Volcker, M., and Schnetz, A. (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J. Biotechnol. 63, 97–109.

    Article  PubMed  CAS  Google Scholar 

  37. Grimshaw, S. J., Mott, H. R., Stott, K. M., et al. (2004) Structure of the sterile alpha motif (SAM) domain of the Saccharomyces cerevisiae mitogen-activated protein kinase pathway-modulating protein STE50 and analysis of its interaction with the STE11 SAM. J. Biol. Chem. 279, 2192–2201.

    Article  PubMed  CAS  Google Scholar 

  38. Qian, H., and Elson, E. L. (1990) On the analysis of high order moments of fluorescence fluctuations. Biophys. J. 57, 375–380.

    Article  PubMed  CAS  Google Scholar 

  39. Qian, H., and Elson, E. L. (1990) Distribution of molecular aggregation by analysis of fluctuation moments. Proc. Natl. Acad. Sci. USA 87, 5479–5483.

    Article  PubMed  CAS  Google Scholar 

  40. Muller, J. D. (2004) Cumulant analysis in fluorescence fluctuation spectroscopy. Biophys. J. 86, 3981–3992.

    Article  PubMed  Google Scholar 

  41. Wu, B., and Muller, J. D. (2005) Time-integrated fluorescence cumulant analysis in fluorescence fluctuation spectroscopy. Biophys. J. 89, 2721–2735.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, B., Chen, Y., and Muller, J. D. (2006) Dual-color time-integrated fluorescence cumulant analysis. Biophys. J. 91, 2687–2698.

    Article  PubMed  CAS  Google Scholar 

  43. Kask, P., Palo, K., Ullmann, D., and Gall, K. (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. USA 96, 13756–13761.

    Article  PubMed  CAS  Google Scholar 

  44. Chen, Y., Muller, J. D., So, P. T., and Gratton, E. (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567.

    Article  PubMed  CAS  Google Scholar 

  45. Meng, F., and Ma, H. (2006) A comparison between photon counting histogram and fluorescence intensity distribution analysis. J. Phys. Chem. B 110, 25716–25720.

    Article  PubMed  CAS  Google Scholar 

  46. Chen, Y., Muller, J. D., Ruan, Q., and Gratton, E. (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys. J. 82, 133–144.

    Article  PubMed  CAS  Google Scholar 

  47. Perroud, T. D., Huang, B., and Zare, R. N. (2005) Effect of bin time on the photon counting histogram for one-photon excitation. Chemphyschem. 6, 905–912.

    Article  PubMed  CAS  Google Scholar 

  48. Hillesheim, L. N., Chen, Y., and Muller, J. D. (2006) Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells. Biophys. J. 91, 4273–4284.

    Article  PubMed  CAS  Google Scholar 

  49. Kask, P., Palo, K., Fay, N., et al. (2000) Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys. J. 78, 1703–1713.

    Article  PubMed  CAS  Google Scholar 

  50. Van der Meer, B. W. (2002) Kappa-squared: from nuisance to new sense. Rev. Mol. Biotechnol. 82, 181–196.

    Article  Google Scholar 

  51. Thompson, N. L. (1991) Fluorescence correlation spectroscopy. In: Lakowicz, J. R. (ed.), Topics in Fluorescence Spectroscopy (pp. 337–378). New York, NY: Plenum Press.

    Google Scholar 

Download references

Acknowledgments

We thank Veronica Conaway (Stowers Institute for Medical Research, SIMR) for discussion on yeast medium, Winfried Wiegraebe (SIMR) for discussions on fluctuation spectroscopy, and Arupratan Das (SIMR) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Slaughter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Slaughter, B.D., Unruh, J.R., Li, R. (2011). Fluorescence Fluctuation Spectroscopy and Imaging Methods for Examination of Dynamic Protein Interactions in Yeast. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics