Skip to main content

Yeast Systems Biology: The Challenge of Eukaryotic Complexity

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

In this chapter, we present an up-to-date view of the optimal characteristics of the yeast Saccharomyces cerevisiae as a model eukaryote for systems biology studies, with main molecular mechanisms, biological networks, and sub-cellular organization essentially conserved in all eukaryotes, derived from a complex common ancestor. The existence of advanced tools for molecular studies together with high-throughput experimental and computational methods, most of them being implemented and validated in yeast, with new ones being developed, is opening the way to the characterization of the core modular architecture and complex networks essential to all eukaryotes. Selected examples of the latest discoveries in eukaryote complexity and systems biology studies using yeast as a reference model and their applications in biotechnology and medicine are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitano, H. (2002) Systems biology: A brief overview. Science 295, 1662–1664.

    PubMed  CAS  Google Scholar 

  2. Castrillo, J. I. and Oliver, S. G. (2006) Metabolomics and systems biology in Saccharomyces cerevisiae. In: Esser, K. (Ed.), Brown, A. J. P. (Vol. Ed.), The Mycota XIII. Fungal Genomics, pp. 3–18. Berlin: Springer.

    Google Scholar 

  3. Darwin, C. and Wallace, A. R. (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linnean Soc. London Zool. 3, 46–50.

    Google Scholar 

  4. Darwin, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st edn.). London: John Murray.

    Google Scholar 

  5. Dobzhansky, T. (1964) Biology, molecular and organismic. Am. Zool. 4, 443–452.

    PubMed  CAS  Google Scholar 

  6. Cain, C. J., Conte, D. A., García-Ojeda M. E., et al. (2008) Integrative biology: What systems biology is (not, yet). Science 320, 1013a.

    Google Scholar 

  7. Caetano-Anollés, G. (2010) Evolutionary Genomics and Systems Biology. Hoboken, NJ: Wiley-Blackwell.

    Google Scholar 

  8. Kell, D. B. and Oliver, S. G. (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105.

    PubMed  Google Scholar 

  9. Klipp, E., Herwig, R., Kowald, A., Wierling, C., and Lehrach, H. (2005) Systems Biology in Practice: Concepts, Implementation and Application. Berlin: Wiley-VCH.

    Google Scholar 

  10. Alon, U. (2006) An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  11. Palsson, B. Ø. (2006) Systems Biology: Properties of Reconstructed Networks. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  12. Boogerd, F. C., Bruggeman, F. J., Hofmeyr, Jan-Hendrik, S., and Westerhoff, H. V. (2007) Systems Biology. Philosophical Foundations. Amsterdam: Elsevier.

    Google Scholar 

  13. Choi, S. (2007) Introduction to Systems Biology. Totowa, NJ: Humana Press.

    Google Scholar 

  14. Ferrell, J. E., Jr. (2009) Q&A: Systems biology. J. Biol. 8, 2.

    PubMed  Google Scholar 

  15. Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H., and Herwig, R. (2009) Systems Biology: A Textbook. Berlin: Wiley-VCH.

    Google Scholar 

  16. Maly, I. V. (2009) Systems Biology. Methods in Molecular Biology, Vol. 500. New York, NY: Humana Press, Springer.

    Google Scholar 

  17. Lee, S. Y. (2009) Systems Biology and Biotechnology of Escherichia coli. New York, NY: Springer.

    Google Scholar 

  18. Snyder, M. and Gallagher, J. E. (2009) Systems biology from a yeast omics perspective. FEBS Lett. 583, 3895–3899.

    PubMed  CAS  Google Scholar 

  19. Coruzzi, G. and Gutierrez, R. (2009) Plant Systems Biology. Annual Plant Review, Vol. 35. Chichester, UK: Wiley-Blackwell.

    Google Scholar 

  20. Chuang, H. Y., Hofree, M., and Ideker, T. (2010) A decade of systems biology. Annu. Rev. Cell Dev. Biol. 26, 721–744.

    PubMed  CAS  Google Scholar 

  21. Grüning, N. M., Lehrach, H., and Ralser, M. (2010) Regulatory crosstalk of the metabolic network. Trends Biochem. Sci. 35, 220–227.

    PubMed  Google Scholar 

  22. Ahn, Y. Y., Bagrow, J. P., and Lehmann, S. (2010) Link communities reveal multiscale complexity in networks. Nature 466, 761–765.

    PubMed  CAS  Google Scholar 

  23. Ideker, T., Thorsson, V., Ranish, J. A., et al. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934.

    PubMed  CAS  Google Scholar 

  24. Ochman, H. and Raghavan, R. (2009) Systems biology. Excavating the functional landscape of bacterial cells. Science 326, 1200–1201.

    PubMed  CAS  Google Scholar 

  25. Güell, M., van Noort, V., Yus, E., et al. (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326, 1268–1271.

    PubMed  Google Scholar 

  26. Kühner, S., van Noort, V., Betts. M. J., et al. (2009) Proteome organization in a genome-reduced bacterium. Science 326, 1235–1240.

    PubMed  Google Scholar 

  27. Yus, E., Maier, T., Michalodimitrakis, K., et al. (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326, 1263–1268.

    PubMed  CAS  Google Scholar 

  28. Ramanathan, A. and Schreiber, S. L. (2007) Multilevel regulation of growth rate in yeast revealed using systems biology. J Biol. 6, 3.

    PubMed  Google Scholar 

  29. Castrillo, J. I., Zeef, L. A., Hoyle, D. C., et al. (2007) Growth control of the eukaryote cell: A systems biology study in yeast. J Biol. 6, 4.

    PubMed  Google Scholar 

  30. Przytycka, T. M. and Andrews, J. (2010) Systems-biology dissection of eukaryotic cell growth. BMC Biol. 8, 62.

    PubMed  Google Scholar 

  31. Gutteridge, A., Pir, P., Castrillo, J. I., Charles, P. D., Lilley, K. S., and Oliver, S. G. (2010) Nutrient control of eukaryote cell growth: A systems biology study in yeast. BMC Biol. 8, 68.

    PubMed  Google Scholar 

  32. Castrillo, J. I. and Oliver, S. G. (2004) Yeast as a touchstone in post-genomic research: Strategies for integrative analysis in functional genomics. J. Biochem. Mol. Biol. 37, 93–106.

    PubMed  CAS  Google Scholar 

  33. Koonin, E. V. (2010) The incredible expanding ancestor of eukaryotes. Cell 140, 606–608.

    PubMed  CAS  Google Scholar 

  34. Luscombe, N. M., Babu, M. M., Yu, H., Snyder, M., Teichmann, S. A., and Gerstein M. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312.

    PubMed  CAS  Google Scholar 

  35. Balaji, S., Babu, M. M., Iyer, L. M., Luscombe, N. M., and Aravind, L. (2006) Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J. Mol. Biol. 360, 213–227.

    PubMed  CAS  Google Scholar 

  36. Rose, A. H. and Harrison, J. S. (1987–1995) The Yeasts, Vols. 1–6. London, UK: Academic.

    Google Scholar 

  37. Sherman, F. (1998) An introduction to the genetics and molecular biology of the yeast Saccharomyces cerevisiae. (http://dbb.urmc.rochester.edu/labs/sherman_f/yeast/).

  38. Sherman, F. (2002) Getting started with yeast. Methods Enzymol. 350, 3–41 (updated in http://dbb.urmc.rochester.edu/labs/sherman_f/startedyeast.pdf).

    PubMed  CAS  Google Scholar 

  39. Lehninger, A. L. (1975) Biochemistry (2nd edn.). New York, NY: Worth Publishers.

    Google Scholar 

  40. Fell, D. A. (1997) Understanding the Control of Metabolism. London: Portland Press.

    Google Scholar 

  41. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2008) Molecular Biology of the Cell (5th edn.). New York, NY: Garland Science, Taylor and Francis Group.

    Google Scholar 

  42. Stansfield, I. and Stark, M. J. (2007) Yeast Gene Analysis (2nd edn.). London: Academic, Elsevier.

    Google Scholar 

  43. Feldmann, H. (2010) Yeast: Molecular and Cell Biology. Weinheim: Wiley-VCH.

    Google Scholar 

  44. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 546, 563–567.

    PubMed  CAS  Google Scholar 

  45. Xiao, W. (2007) Yeast Protocols (2nd edn.). Methods in Molecular Biology, Vol. 313. New York, NY: Humana Press, Elsevier.

    Google Scholar 

  46. Nagalakshmi, U., Wang, Z., Waern, K., et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349.

    PubMed  CAS  Google Scholar 

  47. Stagljar, I. (2009) Yeast Functional Genomics and Proteomics: Methods and Protocols. Methods in Molecular Biology, Vol. 548. New York, NY: Humana Press, Elsevier.

    Google Scholar 

  48. Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., and Aebersold, R. (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806.

    PubMed  CAS  Google Scholar 

  49. Picotti, P., Rinner, O., Stallmach, R., et al. (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat. Methods 7, 43–46.

    PubMed  CAS  Google Scholar 

  50. Kiyonami, R., Schoen, A., Prakash, A., et al. (2011) Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol. Cell. Proteomics 10:M110.002931.

    Google Scholar 

  51. Mirzaei, H., Rogers, R. S., Grimes, B., Eng, J., Aderem, A., and Aebersold, R. (2010) Characterizing the connectivity of poly-ubiquitin chains by selected reaction monitoring mass spectrometry. Mol Biosyst. 6, 2004–2014.

    Google Scholar 

  52. Moazed, D. (2009) Molecular biology. Rejoice – RNAi for yeast. Science 326, 533–534.

    PubMed  CAS  Google Scholar 

  53. Drinnenberg, I. A., Weinberg, D. E., Xie, K. T., et al. (2009) RNAi in budding yeast. Science 326, 544–550.

    PubMed  CAS  Google Scholar 

  54. Hartwell, L. H. (2004) Yeast and cancer. Biosci. Rep. 24, 523–544.

    PubMed  Google Scholar 

  55. Ferrezuelo, F., Colomina, N., Futcher, B., and Aldea, M. (2010) The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol. 11, R67.

    PubMed  Google Scholar 

  56. Chang, F. and Peter, M. (2003) Yeasts make their mark. Nat. Cell Biol. 5, 294–299.

    PubMed  CAS  Google Scholar 

  57. Meyer, M. and Vilardell, J. (2009) The quest for a message: Budding yeast, a model organism to study the control of pre-mRNA splicing. Brief Funct. Genom. Proteom. 8, 60–67.

    CAS  Google Scholar 

  58. McGrail, J. C., Krause, A., and O’Keefe, R. T. (2009) The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing. Nucleic Acids Res. 37, 4205–4217.

    PubMed  CAS  Google Scholar 

  59. Altmann, M. and Linder, P. (2010) Power of yeast for the analysis of eukaryotic translation initiation. J. Biol. Chem. 285, 31907–31912.

    Google Scholar 

  60. Delneri, D., Colson, I., Grammenoudi, S., Roberts, I. N., Louis, E. J., and Oliver, S. G. (2003) Engineering evolution to study speciation in yeasts. Nature 422, 68–72.

    PubMed  CAS  Google Scholar 

  61. Hittinger, C. T. and Carroll, S. B. (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449, 677–681.

    PubMed  CAS  Google Scholar 

  62. Anderson, R. M., Latorre-Esteves, M., Neves, A. R., et al (2003) Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 302, 2124–2126.

    PubMed  CAS  Google Scholar 

  63. Payne, T., Hanfrey, C., Bishop, A. L., Michael, A. J., Avery, S. V., and Archer, D. B. (2008) Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae. FEBS Lett. 582, 503–509.

    PubMed  CAS  Google Scholar 

  64. Cashikar, A. G., Duennwald, M., and Lindquist, S. L. (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem. 280, 23869–23875.

    PubMed  CAS  Google Scholar 

  65. Duennwald, M. L., Jagadish, S., Giorgini, F., Muchowski, P. J., and Lindquist S. (2006) A network of protein interactions determines polyglutamine toxicity. Proc. Natl. Acad. Sci. USA 103, 11051–11056.

    PubMed  CAS  Google Scholar 

  66. Giorgini, F. and Muchowski, P. J. (2009) Exploiting yeast genetics to inform therapeutic strategies for Huntington’s disease. Methods Mol. Biol. 548, 161–174.

    PubMed  CAS  Google Scholar 

  67. Fritz-Laylin, L. K., Prochnik, S. E., Ginger, M. L., et al. (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631–642.

    PubMed  CAS  Google Scholar 

  68. Wickstead, B., Gull, K., and Richards, T. A. (2010) Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol. Biol. 10, 110.

    PubMed  Google Scholar 

  69. Hayden, E. C. (2009) Genome sequencing: The third generation. Nature 457, 768–769.

    Google Scholar 

  70. Nowrousian, M. (2010) Next-generation sequencing techniques for eukaryotic microorganisms: Sequencing-based solutions to biological problems. Eukaryot. Cell 9, 1300–1310.

    Google Scholar 

  71. Metzker, M. L. (2010) Sequencing technologies – the next generation. Nat. Rev. Genet. 11, 31–46.

    PubMed  CAS  Google Scholar 

  72. Werner, T. (2010) Next generation sequencing in functional genomics. Brief Bioinform. 11, 499–511.

    Google Scholar 

  73. Hart, C., Lipson, D., Ozsolak, F., et al. (2010) Single-molecule sequencing: Sequence methods to enable accurate quantitation. Methods Enzymol. 472, 407–430.

    PubMed  CAS  Google Scholar 

  74. Kurdistani, S. K., Tavazoie, S., and Grunstein M. (2004) Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733.

    PubMed  CAS  Google Scholar 

  75. Wang, Z., Zang, C., Cui, K., et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031.

    PubMed  CAS  Google Scholar 

  76. Millar, C. B. and Grunstein, M. (2006) Genome-wide patterns of histone modifications in yeast. Nat. Rev. Mol. Cell. Biol. 7, 657–666.

    PubMed  CAS  Google Scholar 

  77. Shahbazian, M. D. and Grunstein, M. (2007) Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100.

    PubMed  CAS  Google Scholar 

  78. Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M., and Brown, P. O. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538.

    PubMed  CAS  Google Scholar 

  79. Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502.

    PubMed  CAS  Google Scholar 

  80. Eaton, M. L., Galani, K., Kang, S., Bell, S. P., and MacAlpine, D. M. (2010) Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753.

    PubMed  CAS  Google Scholar 

  81. Green, B. M., Finn, K. J., and Li, J. J. (2010) Loss of DNA replication control is a potent inducer of gene amplification. Science 329, 943–946.

    PubMed  CAS  Google Scholar 

  82. Kaochar, S., Paek, A. L., and Weinert, T. (2010) Genetics. Replication error amplified. Science 329, 911–913.

    PubMed  CAS  Google Scholar 

  83. Duan, Z., Andronescu, M., Schutz, K., et al. (2010) A three-dimensional model of the yeast genome. Nature 465, 363–367.

    PubMed  CAS  Google Scholar 

  84. Granovskaia, M. V., Jensen, L. J., Ritchie, M. E., et al. (2010) High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol. 11, R24.

    PubMed  Google Scholar 

  85. Robinson, R. (2010) Dark matter transcripts: Sound and fury, signifying nothing? PLoS Biol. 8, e1000370.

    PubMed  Google Scholar 

  86. Robertson, M. (2010) The evolution of gene regulation, the RNA universe, and the vexed questions of artefact and noise. BMC Biol. 8, 97.

    PubMed  Google Scholar 

  87. Levin, J. Z., Yassour, M., Adiconis, X., et al. (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715.

    Google Scholar 

  88. Lipson, D., Raz, T., Kieu, A., et al. (2010) Quantification of the yeast transcriptome by single-molecule sequencing. Nat. Biotechnol. 27, 652–658.

    Google Scholar 

  89. Ozsolak, F., Platt, A. R., Jones, D. R., et al. (2009) Direct RNA sequencing. Nature 461, 814–818.

    PubMed  CAS  Google Scholar 

  90. Rusk, N. (2009) The true RNA-seq. Nat. Methods 6, 790–791.

    Google Scholar 

  91. Haas, B. J. and Zody, M. C. (2010) Advancing RNA-Seq analysis. Nat. Biotechnol. 28, 421–423.

    PubMed  CAS  Google Scholar 

  92. Auer, P. L. and Doerge, R. W. (2010) Statistical design and analysis of RNA sequencing data. Genetics 185, 405–416.

    PubMed  CAS  Google Scholar 

  93. Chalamcharla, V. R., Curcio, M. J., and Belfort, M. (2010) Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry. Genes Dev. 24, 827–836.

    PubMed  CAS  Google Scholar 

  94. Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G., and Stutz, F. (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131, 706–717.

    PubMed  CAS  Google Scholar 

  95. Camblong, J., Beyrouthy, N., Guffanti, E., Schlaepfer, G., Steinmetz, L. M., and Stutz, F. (2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev. 23, 1534–1545.

    PubMed  CAS  Google Scholar 

  96. Harrison, B. R., Yazgan, O., and Krebs, J. E. (2009) Life without RNAi: Noncoding RNAs and their functions in Saccharomyces cerevisiae. Biochem. Cell Biol. 87, 767–779.

    PubMed  CAS  Google Scholar 

  97. Bumgarner, S. L., Dowell, R. D., Grisafi, P., Gifford, D. K., and Fink, G. R. (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl. Acad. Sci. USA 106, 18321–18326.

    PubMed  CAS  Google Scholar 

  98. Winston, F. (2009) A transcription switch toggled by noncoding RNAs. Proc. Natl. Acad. Sci. USA 106, 18049–18050.

    PubMed  CAS  Google Scholar 

  99. Yassour, M., Pfiffner, J., Levin, J. Z., et al. (2010) Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol. 11, R87.

    PubMed  Google Scholar 

  100. Kertesz, M., Wan, Y., Mazor, E. et al. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107.

    PubMed  CAS  Google Scholar 

  101. Mattick, J. S. (2004) RNA regulation: A new genetics? Nat. Rev. Genet. 5, 316–323.

    PubMed  CAS  Google Scholar 

  102. Mattick, J. S. (2007) A new paradigm for developmental biology. J. Exp. Biol. 210, 1526–1547.

    PubMed  Google Scholar 

  103. de Godoy, L. M., Olsen, J. V., Cox, J., et al. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254.

    PubMed  Google Scholar 

  104. Vaidyanathan, S., Harrigan, G. G., and Goodacre, R. (2005). Metabolome Analyses: Strategies for Systems Biology. New York, NY: Springer.

    Google Scholar 

  105. Förster, J., Famili, I., Fu, P., Palsson, B. Ø., and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253.

    PubMed  Google Scholar 

  106. Duarte, N. C., Herrgård, M. J., and Palsson, B. Ø. (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309.

    PubMed  CAS  Google Scholar 

  107. Herrgård, M. J., Swainston, N., Dobson, P., et al. (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26, 1155–1160.

    PubMed  Google Scholar 

  108. Mo, M. L., Palsson, B. Ø., and Herrgård, M. J. (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37.

    PubMed  Google Scholar 

  109. Fordyce, P. M., Gerber, D., Tran, D., et al. (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat. Biotechnol. 28, 970–975.

    Google Scholar 

  110. Oeffinger, M., Wei, K. E., Rogers R., et al. (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 4, 951–956.

    PubMed  CAS  Google Scholar 

  111. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., and Brown, P. O. (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255.

    PubMed  Google Scholar 

  112. Cornell, M., Paton, N. W., and Oliver, S. G. (2004) A critical and integrated view of the yeast interactome. Comp. Funct. Genomics 5, 382–402.

    PubMed  Google Scholar 

  113. Charbonnier, S., Zanier, K., Masson, M., and Travé, G. (2006) Capturing protein–protein complexes at equilibrium: The holdup comparative chromatographic retention assay. Protein Expr. Purif. 50, 89–101.

    PubMed  CAS  Google Scholar 

  114. Pu, S., Wong, J., Turner, B., Cho, E., and Wodak, S. J. (2009) Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 37, 825–831.

    PubMed  CAS  Google Scholar 

  115. Benschop, J. J., Brabers, N., van Leenen, D., et al. (2010) A consensus of core protein complex compositions for Saccharomyces cerevisiae. Mol. Cell 38, 916–928.

    PubMed  CAS  Google Scholar 

  116. Schmitz, A. M., Morrison, M. F., Agunwamba, A. O., Nibert, M. L., and Lesser, C. F. (2009) Protein interaction platforms: Visualization of interacting proteins in yeast. Nat. Methods 6, 500–502.

    PubMed  CAS  Google Scholar 

  117. Wang, H., Kakaradov, B., Collins, S. R., et al. (2009) A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Mol. Cell. Proteomics 8, 1361–1381.

    PubMed  CAS  Google Scholar 

  118. Beltrao, P., Cagney, G., and Krogan, N. J. (2010) Quantitative genetic interactions reveal biological modularity. Cell 141, 739–745.

    PubMed  CAS  Google Scholar 

  119. Costanzo, M., Baryshnikova, A., Bellay, J., et al. (2010) The genetic landscape of a cell. Science 327, 425–431.

    PubMed  CAS  Google Scholar 

  120. Gavin, A. C., Aloy, P., Grandi, P., et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636.

    PubMed  CAS  Google Scholar 

  121. Breitkreutz, A., Choi, H., Sharom, J. R., et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043–1046.

    PubMed  CAS  Google Scholar 

  122. Mok, J., Kim, P. M., Lam, H. Y., et al. (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal. 3, ra12.

    PubMed  Google Scholar 

  123. Gong, Y., Kakihara, Y., Krogan, N., et al. (2009) An atlas of chaperone–protein interactions in Saccharomyces cerevisiae: Implications to protein folding pathways in the cell. Mol. Syst. Biol. 5, 275.

    PubMed  Google Scholar 

  124. Kung, L. A., Tao, S. C., Qian, J., Smith, M. G., Snyder, M., and Zhu, H. (2009) Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes. Mol. Syst. Biol. 5, 308.

    PubMed  Google Scholar 

  125. Castegna, A., Scarcia, P., Agrimi, G., et al. (2010) Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 285, 17359–17370.

    PubMed  CAS  Google Scholar 

  126. Klitgord, N. and Segrè D. (2010) The importance of compartmentalization in metabolic flux models: Yeast as an ecosystem of organelles. Genome Inform. 22, 41–55.

    PubMed  Google Scholar 

  127. Scott, E. M. and Pillus, L. (2010) Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage. Genes Dev. 24, 1903–1913.

    PubMed  CAS  Google Scholar 

  128. Yogev, O., Yogev, O., Singer, E., et al. (2010) Fumarase: A mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol. 8, e1000328.

    PubMed  Google Scholar 

  129. Pronk, J. T. (2002) Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 68, 2095–2100.

    PubMed  CAS  Google Scholar 

  130. Davies, J. (2009) Regulation, necessity, and the misinterpretation of knockouts. Bioessays 31, 826–830.

    PubMed  CAS  Google Scholar 

  131. DeLuna, A., Springer, M., Kirschner, M. W., and Kishony, R. (2010) Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol. 8, e1000347.

    PubMed  Google Scholar 

  132. Gout, J. F., Kahn, D., Duret, L., and Paramecium Post-Genomics Consortium (2010) The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet. 6, e1000944.

    PubMed  Google Scholar 

  133. Baulcombe, D. C. (1996). RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol. Biol. 32, 79–88.

    PubMed  CAS  Google Scholar 

  134. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    PubMed  CAS  Google Scholar 

  135. Jacquier, A. (2009) The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844.

    PubMed  CAS  Google Scholar 

  136. Berretta, J. and Morillon A. (2009) Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10, 973–982.

    PubMed  CAS  Google Scholar 

  137. van Bakel, H., Nislow, C., Blenclowe, B. C., and Hughes, T. R. (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol. 8, e1000371.

    PubMed  Google Scholar 

  138. Phillips, M. L. (2010) Existence of RNA ‘dark matter’ in doubt. Nature. doi:10.1038/news.2010.248. http://www.nature.com/news/2010/100518/full/news.2010.248.html.

  139. Hannon, G. J., Rivas, F. V., Murchison, E. P., and Steitz, J. A. (2006) The expanding universe of noncoding RNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 551–564.

    PubMed  CAS  Google Scholar 

  140. Grosshans, H. and Filipowicz, W. (2008) Molecular biology: The expanding world of small RNAs. Nature 451, 414–416.

    PubMed  CAS  Google Scholar 

  141. Dieci, G., Preti, M., and Montanini, B. (2009) eukaryotic snoRNAs: A paradigm for gene expression flexibility. Genomics 94, 83–88.

    PubMed  CAS  Google Scholar 

  142. MacLean, D., Elina, N., Havecker, E. R., Heimstaedt, S. B., Studholme, D. J., and Baulcombe, D. C. (2010) Evidence for large complex networks of plant short silencing RNAs. PLoS One 5, e9901.

    PubMed  Google Scholar 

  143. Wilusz, J. E., Sunwoo, H., and Spector, D. L. (2009) Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23, 1494–1504.

    PubMed  CAS  Google Scholar 

  144. Mercer, T. R., Dinger, M. E., and Mattick, J. S. (2009) Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 10, 155–159.

    PubMed  CAS  Google Scholar 

  145. Qureshi, I. A., Mattick, J. S., and Mehler, M. F. (2010) Long non-coding RNAs in nervous system function and disease. Brain Res. 1338, 20–35.

    PubMed  CAS  Google Scholar 

  146. Amaral, P. P., Dinger, M. E., Mercer, T. R., and Mattick, J. S. (2008) The eukaryotic genome as an RNA machine. Science 319, 1787–1789.

    PubMed  CAS  Google Scholar 

  147. Mattick, J. (2010) Video Q&A: Non-coding RNAs and eukaryotic evolution – a personal view. BMC Biol. 8, 67.

    PubMed  Google Scholar 

  148. Waters, L. S. and Storz, G. (2009) Regulatory RNAs in bacteria. Cell 136, 615–628.

    PubMed  CAS  Google Scholar 

  149. van Vliet, A. H. and Wren, B. W. (2009) New levels of sophistication in the transcriptional landscape of bacteria. Genome Biol. 10, 233.

    PubMed  Google Scholar 

  150. Kondo, T., Plaza, S., Zanet, J., et al. (2010) Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science 329, 336–339.

    PubMed  CAS  Google Scholar 

  151. Nilsen, T. W. and Graveley, B. R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463.

    PubMed  CAS  Google Scholar 

  152. Wang, E. T., Sandberg, R., Luo, S., et al. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476.

    PubMed  CAS  Google Scholar 

  153. Apostolatos, H., Apostolatos, A., Vickers, T., et al. (2010) Vitamin a metabolite, all-trans retinoic acid, mediates alternative splicing of protein kinase C delta(PKC){delta})VIII isoform via the splicing factor SC35. J. Biol. Chem. 285, 25987–25995.

    Google Scholar 

  154. Tsvetanova, N. G., Klass, D. M., Salzman, J., and Brown, P. O. (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5(9), pii, e12671.

    Google Scholar 

  155. Rederstorff, M., Bernhart, S. H., Tanzer, A., et al. (2010) RNPomics: Defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res. 38, e113.

    PubMed  Google Scholar 

  156. Conacci-Sorrell, M., Ngouenet, C., and Eisenman, R. N. (2010) Myc-nick: A cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 142, 480–493.

    PubMed  CAS  Google Scholar 

  157. Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R., and Mehler, M. F. (2009) RNA regulation of epigenetic processes. Bioessays 31, 51–59.

    PubMed  CAS  Google Scholar 

  158. Alló, M., Buggiano, V., Fededa, J. P., et al. (2009) Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16, 717–724.

    PubMed  Google Scholar 

  159. Mattick, J. S., Taft, R. J., and Faulkner, G. J. (2010) A global view of genomic information—moving beyond the gene and the master regulator. Trends Genet. 26, 21–28.

    PubMed  CAS  Google Scholar 

  160. Müller, B. and Grossniklaus, U. (2010) Model organisms – A historical perspective. J. Proteomics 73, 2054–2063.

    Google Scholar 

  161. Gregor, T., Fujimoto, K., Masaki, N., and Sawai S. (2010) The onset of collective behavior in social amoebae. Science 328, 1021–1025.

    PubMed  CAS  Google Scholar 

  162. Srivastava, M., Simakov, O., Chapman, J., et al. (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726.

    PubMed  CAS  Google Scholar 

  163. Butler, D. (2010) Human genome at ten: Science after the sequence. Nature 465, 1000–1001.

    PubMed  CAS  Google Scholar 

  164. Qin, J., Li, R., Raes, J., et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    PubMed  CAS  Google Scholar 

  165. Kuepfer, L. (2010) Toward whole-body systems physiology. Mol. Syst. Biol. 6, 409.

    PubMed  Google Scholar 

  166. Donalies, U. E., Nguyen, H. T., Stahl, U., and Nevoigt, E. (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. Adv. Biochem. Eng. Biotechnol. 111, 67–98.

    PubMed  CAS  Google Scholar 

  167. Tanaka, F., Ando, A., Nakamura, T., Takagi, H., and Shima, J. (2006) Functional genomic analysis of commercial Baker’s yeast during initial stages of model dough-fermentation. Food Microbiol. 23, 717–728.

    PubMed  CAS  Google Scholar 

  168. Pizarro, F., Vargas, F. A., and Agosin E. (2007) A systems biology perspective of wine fermentations. Yeast 24, 977–991.

    PubMed  CAS  Google Scholar 

  169. Borneman, A. R., Chambers, P. J., and Pretorius, I. S. (2007) Yeast systems biology: Modeling the winemaker’s art. Trends Biotechnol. 25, 349–355.

    PubMed  CAS  Google Scholar 

  170. Ando, A., Nakamura, T., Murata, Y., Takagi, H., and Shima, J. (2007) Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res. 7, 244–253.

    PubMed  CAS  Google Scholar 

  171. Lee, S. Y., Kim, H. U., Park, J. H., Park, J. M., and Kim, T. Y. (2009) Metabolic engineering of microorganisms: General strategies and drug production. Drug Discov. Today 14, 78–88.

    PubMed  CAS  Google Scholar 

  172. Nielsen, J. and Jewett, M. C. (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8, 122–131.

    PubMed  CAS  Google Scholar 

  173. Nevoigt, E. (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72, 379–412.

    PubMed  CAS  Google Scholar 

  174. Ro, D. K., Paradise, E. M, Ouellet, M., et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943.

    PubMed  CAS  Google Scholar 

  175. Ardiani, A., Higgins, J. P., and Hodge, J. W. (2010) Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 10, 1060–1069.

    Google Scholar 

  176. Petranovic, D. and Vemuri, G. N. (2009) Impact of yeast systems biology on industrial biotechnology. J. Biotechnol. 144, 204–211.

    PubMed  CAS  Google Scholar 

  177. Petranovic, D. and Nielsen, J. (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol. 26, 584–590.

    PubMed  CAS  Google Scholar 

  178. Hutt, D. and Balch, W. E. (2010) Cell biology. The proteome in balance. Science 329, 766–767.

    PubMed  CAS  Google Scholar 

  179. Joyner, P. M., Matheke, R. M., Smith, L. M., and Cichewicz, R. H. (2010) Probing the metabolic aberrations underlying mutant huntingtin toxicity in yeast and assessing their degree of preservation in humans and mice. J. Proteome Res. 9, 404–412.

    PubMed  CAS  Google Scholar 

  180. Khurana, V. and Lindquist, S. (2010) Modeling neurodegeneration in Saccharomyces cerevisiae: Why cook with baker’s yeast? Nat. Rev. Neurosci. 11, 436–449.

    PubMed  CAS  Google Scholar 

  181. Bharucha, N. and Kumar, A. (2007) Yeast genomics and drug target identification. Comb. Chem. High Throughput Screen. 10, 618–634.

    PubMed  CAS  Google Scholar 

  182. Smith, A. M., Ammar, R., Nislow, C., and Giaever, G. (2010) A survey of yeast genomic assays for drug and target discovery. Pharmacol. Ther. 127, 156–164.

    PubMed  CAS  Google Scholar 

  183. Yu, L., Lopez, A., Anaflous, A., et al. (2008) Chemical–genetic profiling of imidazo[1,2-a]pyridines and -pyrimidines reveals target pathways conserved between yeast and human cells. PLoS Genet. 4, e1000284.

    PubMed  Google Scholar 

  184. Ho, R. L. and Lieu, C. A. (2008) Systems biology: An evolving approach in drug discovery and development. Drugs R. D. 9, 203–216.

    PubMed  CAS  Google Scholar 

  185. Stefanini, I., Trabocchi, A., Marchi, E., Guarna, A., and Cavalieri D. (2010) A systems biology approach to dissection of the effects of small bicyclic peptidomimetics on a panel of Saccharomyces cerevisiae mutants. J. Biol. Chem. 285, 23477–23485.

    PubMed  CAS  Google Scholar 

  186. Hayden, E. C. (2010) Human genome at ten: Life is complicated. Nature 464, 664–667.

    CAS  Google Scholar 

  187. Oliver, S. G. (1997) Yeast as a navigational aid in genome analysis. Microbiology 143, 1483–1487.

    PubMed  CAS  Google Scholar 

  188. Oliver, S. G. (2002) Functional genomics: Lessons from yeast. Philos. Trans. R. Soc. London B. Biol. Sci. 357, 17–23.

    PubMed  CAS  Google Scholar 

  189. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    PubMed  CAS  Google Scholar 

  190. Giaever, G., Chu, A. M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    PubMed  CAS  Google Scholar 

  191. Heard, E., Tishkoff, S., Todd, J. A., et al. (2010) Ten years of genetics and genomics: What have we achieved and where are we heading? Nat. Rev. Genet. 11, 723–733.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by BBSRC grants BB/C505140/2 and BB/F00446X/1 as well as by a contract from the European Commission under the FP7 Collaborative Programme, UNICELLSYS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Castrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Castrillo, J.I., Oliver, S.G. (2011). Yeast Systems Biology: The Challenge of Eukaryotic Complexity. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics