Skip to main content

Genomic-Wide Methods to Evaluate Transcription Rates in Yeast

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

Abstract

Gene transcription is a dynamic process in which the desired amount of an mRNA is obtained by the equilibrium between its transcription (TR) and degradation (DR) rates. The control mechanism at the RNA polymerase level primarily causes changes in TR. Despite their importance, TRs have been rarely measured. In the yeast Saccharomyces cerevisiae, we have implemented two techniques to evaluate TRs: run-on and chromatin immunoprecipitation of RNA polymerase II. These techniques allow the discrimination of the relative importance of TR and DR in gene regulation for the first time in a eukaryote.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirayoshi, K. and Lis, J. T. (1999) Nuclear run-on assays: assessing transcription by measuring density of engaged RNA polymerases. Methods Enzymol. 304, 351–62.

    Google Scholar 

  2. Fan, J., Yang, X., Wang, W., Wood, W. H. 3rd, Becker, K. G. and Gorospe, M. (2002) Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl. Acad. Sci. USA 99, 10611–10616.

    Google Scholar 

  3. Legen, J., Kemp, S., Krause, K., Profanter, B., Herrmann, R. G. and Maier, R. M. (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J. 31, 171–188.

    Google Scholar 

  4. García-Martínez, J., Aranda, A. and Pérez-Ortín, J. E. (2004) Genomic Run-On evaluates transcription rates for all yeast genes and identifies new gene regulatory mechanisms. Mol. Cell 15, 303–313.

    Google Scholar 

  5. Pérez-Ortín, J. E., Alepuz, P. and Moreno, J. (2007) Genomics and gene transcription kinetics in yeast. Trends Genet. 23, 250–257.

    Google Scholar 

  6. Molina-Navarro, M. M., Castells-Roca, L., Bellí, G., García-Martínez, J., Marín-Navarro, J., Moreno, J., Pérez-Ortín, J. E. and Herrero, E. (2008) Comprehensive transcriptional analysis of the oxidative response in yeast. J. Biol. Chem. 283, 17908–17918.

    Google Scholar 

  7. Romero-Santacreu, L., Moreno, J., Pérez-Ortín, J. E. and Alepuz, P. (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15, 1110–1120.

    Google Scholar 

  8. Marín-Navarro, J., Jauhiainen, A., Moreno, J., Alepuz, P.M., Pérez-Ortín, P.M. and Sunnerhagen, P. (2010). Global estimation of mRNA stability in yeast. (this book, chapter 1).

    Google Scholar 

  9. Core, L. J., Waterfall, J. J. and Lis, J. T. (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–8.

    Google Scholar 

  10. Sandoval, J., Rodríguez, J. L., Tur, G., Serviddio, G., Pereda, J., Boukaba, A., Sastre, J., Torres, L., Franco, L. and López-Rodas, G. (2004) RNA Pol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res. 32, e88.

    Google Scholar 

  11. Alepuz, P. M., de Nadal, E., Zapater, M., Ammerer, G. and Posas, F. (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J. 22, 2433–2442.

    Google Scholar 

  12. Brodsky, A. S., Meyer, C. A., Swinburne, I.A., Hall, G., Keenan, B. J., Liu, X. S., Fox, E. A. and Silver, P. A. (2005) Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol. 6, R64.

    Google Scholar 

  13. Steinmetz, E. J., Warren, C. L., Kuehner, J. N., Panbehi, B., Ansari, A. Z. and Brow, D. A. (2006) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735–746.

    Google Scholar 

  14. Jasiak, A. J., Hartmann, H., Karakasili, E., Kalocsay, M., Flatley, A., Kremmer, E., Strasser, K., Martin, D. E., Soding, J. and Cramer, P. (2008) Genome-associated RNA polymerase II includes the dissociable Rpb4/7 subcomplex. J. Biol. Chem. 283, 26423–26427.

    Google Scholar 

  15. Venters, B. J. and Pugh, B.F. (2009) A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371.

    Google Scholar 

  16. Pelechano, V., Jimeno-González, S., Rodríguez-Gil, A., García-Martínez, J., Pérez-Ortín, J. E. and Chávez, S. (2009) Regulon-specific control of transcription elongation across the yeast genome. PLoS Genet. 5, e1000614.

    Google Scholar 

  17. Alberola, T. M., García-Martínez, J., Antúnez, O., Viladevall, L., Barceló, A., Ariño, J., Pérez-Ortín, J. E. (2004) A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. Int. Microbiol. 7, 199–206.

    Google Scholar 

  18. Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S.P. and Young, R. A. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309.

    Google Scholar 

  19. Iyer, V. and Struhl, K. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae (1996). Proc. Natl. Acad. Sci. USA 93, 5208–5212.

    Google Scholar 

  20. Wang, Y., Liu, C.L., Storey, J.D., Tibshirani, R.J., Herschlag, D. and Brown. P.O. (2002). Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99, 5860–5865.

    Google Scholar 

  21. Komarnitsky, P., Cho, E. J. and Buratowski, S. (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460.

    Google Scholar 

  22. Radonjic, M., Andrau, J. C., Lijnzaad, P., Kemmeren, P., Kockelkorn, T. T., van Leenen, D., van Berkum, N. L. and Holstege, F.C. (2005). Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell 18, 171–183.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Priyanka Palit, Toni Jordán, and Fany Carrasco for their help in optimizing the GRO protocol, and also Sebastián Chávez and Paula Alepuz for critically reviewing the manuscript. This work has been supported by grants BFU2007-67575-CO3-01/BMC from the Spanish Ministry of Education and Science and by grant ACOMP/2009/368 from the Generalitat Valenciana (Valencian Regional Government) awarded to JEP-O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Pérez-Ortín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

García-Martínez, J., Pelechano, V., Pérez-Ortín, J.E. (2011). Genomic-Wide Methods to Evaluate Transcription Rates in Yeast. In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics