Skip to main content

Engineering Protein Stability

  • Protocol
  • First Online:
Book cover Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 681))

Abstract

This article defines protein stability, emphasizes its importance and surveys some notable recent publications (2004–2008) in the field of protein stability/stabilization. Knowledge of the factors stabilizing proteins has emerged from denaturation studies and from study of thermophilic (and other extremophilic) proteins. One can enhance stability by protein engineering strategies, the judicious use of solutes and additives, immobilization, and chemical modification in solution. General protocols are set out on how to measure the kinetic thermal stability of a given protein and how to undertake chemical modification of a protein in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom, J.D., Labthavikul, S.T., Otery, C.R., Arnold, F.H. (2006) Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874.

    PubMed  CAS  Google Scholar 

  2. Zeldovich, K.B., Chen, P., Shakhnovich, E.I. (2007) Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc. Natl. Acad. Sci. USA 104, 16152–16157.

    PubMed  CAS  Google Scholar 

  3. Mozhaev, V.V., Martinek, K. (1982) Inactivation and reactivation of enzymes. Enzyme Microb. Technol. 4, 299–309.

    CAS  Google Scholar 

  4. Liu, W.R., Langer, R., Klibanov, A.M. (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng. 37, 177–184.

    PubMed  CAS  Google Scholar 

  5. Costantino, H.R., Langer, R. & Klibanov, A.M. (1995) Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin. Biotechnology 13, 493–496.

    PubMed  CAS  Google Scholar 

  6. Volkin, D.B., Middaugh, C.R. (1992) The effect of temperature on protein structure, in Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation (Ahern, T.J., Manning, M.C., eds) Plenum, New York, pp. 215–247.

    Google Scholar 

  7. Hageman, M.J. (1992) Water sorption and solid-state stability of proteins, in Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation (Ahern, T.J., Manning, M.C., eds) Plenum, New York, pp. 273–309.

    Google Scholar 

  8. Quax, W.J. (1993) Thermostable glucose isomerases. Trends Food. Sci. Technol. 4, 31–34.

    CAS  Google Scholar 

  9. Parsell, D.A., Sauer, R.T. (1989) The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol. Chem. 264, 7590–7595.

    PubMed  CAS  Google Scholar 

  10. Mozhaev, V.V. (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. 11, 88–95.

    PubMed  CAS  Google Scholar 

  11. Zale, S.E., Klibanov, A.M. (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnol. Bioeng. 25, 2221–2230.

    PubMed  CAS  Google Scholar 

  12. Jerne, N.K., Perry, W.L.M. (1956) The stability of biological standards. Bull. World Health Organ. 14, 167–182.

    PubMed  CAS  Google Scholar 

  13. Kirkwood, T.B.L. (1984) Design and analysis of accelerated degradation tests for the stability of biological standards III. Principles of design. J. Biol. Stand. 12, 215–224.

    PubMed  CAS  Google Scholar 

  14. Franks, F. (1994) Accelerated stability testing of bioproducts: attractions and pitfalls. Trends Biotechnol. 12, 114–117.

    PubMed  CAS  Google Scholar 

  15. Baldwin, R.L., Eisenberg, D.E. (1987) Protein stability, in Protein engineering (Oxender, D.L., Fox, C.F., eds) Alan R. Liss, New York. pp. 127–148.

    Google Scholar 

  16. Pace, C.N. (1990) Measuring and increasing protein stability. Trends Biotechnol. 8, 93–98.

    PubMed  CAS  Google Scholar 

  17. Pace, C.N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266–280.

    PubMed  CAS  Google Scholar 

  18. Becktel, W.J., Schellman, J.A. (1987) Protein stability curves. Biopolymers 26, 1859–1877.

    PubMed  CAS  Google Scholar 

  19. Niesen, F.H., Berglund, H., Vedadi, M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221.

    PubMed  CAS  Google Scholar 

  20. Boeckler, F.M., Joerger, A.C., Jaggi, G., Rutherford, T.J., Veprintsev, D.B., Fersht, A.R. (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl. Acad. Sci. USA 105, 10360–10365.

    PubMed  CAS  Google Scholar 

  21. West, G.M., Tang, L., Fitzgerald M.C. (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal. Chem. 80, 4175–4185.

    PubMed  CAS  Google Scholar 

  22. Dutta, S., Koide, A., Koide, S. (2008) High-throughput analysis of the protein sequence-stability landscape using a quantitative yeast surface two-hybrid system and fragment reconstruction. J. Mol. Biol. 382, 721–733.

    PubMed  CAS  Google Scholar 

  23. Hoffmann, B., Eichmüller, C., Steinhauser, O., Konrat, R. (2005) Rapid assessment of protein structural stability and fold validation via NMR. Methods Enzymol. 394, 142–174.

    PubMed  CAS  Google Scholar 

  24. Park, C.W. and Marqusee, S. (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat. Methods 2, 207–212.

    PubMed  CAS  Google Scholar 

  25. Bo, T., Pawliszyn, J. (2006) Protein thermal stability and phospoprotein-lipid interaction investigated by capillary isoelectric focusing with whole column imaging detection. J. Sep. Sci. 29, 1018–1025.

    PubMed  CAS  Google Scholar 

  26. Aucamp, J.P., Cosme, A.M., Lye, G.J., Dalby, P.A (2005) High-throughput measurement of protein stability in microtiter plates. Biotechnol. Bioeng. 89, 599–607.

    PubMed  CAS  Google Scholar 

  27. Ó’Fágáin, C. (2003) Enzyme stabilization: recent experimental progress. Enzyme Microb. Technol. 33, 137–149.

    Google Scholar 

  28. Ó’Fágáin, C. (1997) Stabilizing protein function. Springer, Berlin.

    Google Scholar 

  29. Ó’Fágáin, C. (1995) Understanding and increasing protein stability. Biochim. Biophys. Acta 1252, 1–14.

    Google Scholar 

  30. Manning, M., Colón, W. (2004) Structural basis of protein kinetic stability. Biochemistry 43, 11248–11254.

    PubMed  CAS  Google Scholar 

  31. Lee, D.W., Hong, Y.H., Choe, E.A., Lee, S.J., Kim, S.B., Lee, H.S., Oh, J.W., Shin, H.H., Pyun, Y.R. (2005) A thermodynamic study of mesophilic, thermophilic and hyperthermophilic L-arabinose isomerases. FEBS Lett. 579, 1261–1266.

    PubMed  CAS  Google Scholar 

  32. Schafer, K., et al. (2004) X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J. Mol. Biol. 335, 261–274.

    PubMed  CAS  Google Scholar 

  33. Yokota, K., Satou, K., Ohki, S. (2006) Comparative analysis of protein thermal stability: differences in amino acid content and substitutions at the surfaces and in the core regions of thermophilic and mesophilic proteins. Sci. Tech. Adv. Mater. 7, 255–262.

    CAS  Google Scholar 

  34. Brinda, K.V., Vishveshwara, S. (2005) A network representation of protein structures: implications for protein stability. Biophys. J. 89, 4159–4170.

    PubMed  CAS  Google Scholar 

  35. Pechkova, E., Sivozhelezov, V., Nicolini, C. (2007) Protein thermal stability: the role of protein structure and aqueous environment. Arch. Biochem. Biophys. 466, 40–48.

    PubMed  CAS  Google Scholar 

  36. Beeby, M., O’Connor, B.D., Ryttersgaard, C., Boutz, D.R., Perry, L.J., Yeates, T.O. (2005) The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol. 3, 1549–1558.

    CAS  Google Scholar 

  37. Boutz, D.R., Cascio, D., Whitelegge, J., Perry, L.J., Yeates, T.O. (2007) Discovery of a thermophilic protein complex stabilized by topologically interlinked chains. J. Mol. Biol. 368, 1332–1344.

    PubMed  CAS  Google Scholar 

  38. Franceschini, S., Ceci, P., Alaleona, F., Chiancone, E., Ilari, A. (2006) Antioxidant Dps protein from the thermophilic cyanobacterium Thermosynechococcus elongatus: an intrinsically stable cage-like structure endowed with enhanced stability. FEBS J. 273, 4913–4928.

    PubMed  CAS  Google Scholar 

  39. Scire, A., Marabotti, A., Aurilia, V., Staiano, M., Ringhieri, P., Iozzino, L., Crescenzo, R., Tanfani, F., D’Auria, S. (2008) Molecular strategies for protein stabilization: the case of a trehalose/maltose-binding protein from Thermus thermophilus. Proteins 73, 839–850.

    PubMed  CAS  Google Scholar 

  40. Cattoni, D.I., Flecha, F.L.G., Arguello, J.M. (2008) Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus. Arch. Biochem. Biophys. 471, 198–206.

    PubMed  CAS  Google Scholar 

  41. Eisenberg-Domovich, Y., Hytonen, V.P., Wilchek, M., Bayer, E.A., Kulomaa, M.S., Livnah, O. (2005) High-resolution crystal structure of an avidin-related protein: insight into high-affinity biotin binding and protein stability. Acta Crystallogr. D Biol. Crystallogr. 61, 528–538.

    PubMed  Google Scholar 

  42. Sivkumar, N., Li, N., Tang, J.W., Patel, B.K.C., Swaminathan, K. (2006) Crystal structure of AmyA lacks acidic surface and provides insights into protein stability at polyextreme condition. FEBS Lett. 580, 2646–2652.

    Google Scholar 

  43. Cherry, J.R., Lamsa, M.H., Schneider, P., Vind, J., Svendsen, A., Jones, A., Pedersen, A.H. (1999) Directed evolution of a fungal peroxidase. Nat. Biotechnol. 17, 379–384.

    PubMed  CAS  Google Scholar 

  44. Mukaiyama, A., Haruki, M., Ota, M., Koga,Y., Takano, K., Kanaya, S. (2006) A hyperthermophilic protein acquires function at the cost of stability. Biochemistry 45, 12673–12679.

    PubMed  CAS  Google Scholar 

  45. Valderrama, B., Garcia-Arellano, H., Giansanti, S., Baratto, M.C., Pogni, R., Vazquez-Duhalt, R. (2006) Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering. FASEB J. 20, 1233–1235.

    PubMed  CAS  Google Scholar 

  46. Palmer, B., Angus, K., Taylor, L., Warwicker, J., Derrick, J.P. (2008) Design of stability at extreme alkaline pH in streptococcal protein G. J. Biotechnol. 134, 222–230.

    PubMed  CAS  Google Scholar 

  47. Rodriguez-Larrea, D., Minning, S., Borchert, T.V., Sanchez-Ruiz, J.M. (2006) Role of solvation barriers in protein kinetic stability. J. Mol. Biol. 360, 715–724.

    PubMed  CAS  Google Scholar 

  48. Minetti, C.A., Remeta, D.P. (2006) Energetics of membrane protein folding and stability. Arch. Biochem. Biophys. 453, 32–53.

    PubMed  CAS  Google Scholar 

  49. Wunderlich, M., Martin, A., Schmid, F.X. (2005) Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of coulombic interactions. J. Mol. Biol. 347, 1063–1076.

    PubMed  CAS  Google Scholar 

  50. Wunderlich, M., Martin, A., Staab, C.A., Schmid, F.X. (2005) Evolutionary protein stabilization in comparison with computational design. J. Mol. Biol. 351, 1160–1168.

    PubMed  CAS  Google Scholar 

  51. Barakat, N.H., Barakat, N.H., Carmody, L.J., Love, J.J. (2007) Exploiting elements of transcriptional machinery to enhance protein stability. J. Mol. Biol. 366, 103–116.

    PubMed  CAS  Google Scholar 

  52. Sarkar, C.A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E., Plueckthen, A. (2008) Directed evolution of a G protein-coupled receptor for expression, stability and binding selectivity. Proc. Natl. Acad. Sci. USA 105, 14808–14813.

    PubMed  CAS  Google Scholar 

  53. Masso, M., Vaisman, I.I. (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure-based computational mutagenesis. Bioinformatics 24, 2002–2009.

    PubMed  CAS  Google Scholar 

  54. Tan, Y.H., Luo, R. (2008) Protein stability prediction: a Poisson-Boltzmann approach. J. Phys. Chem. B 112, 1875–1883.

    PubMed  CAS  Google Scholar 

  55. Huang, L.T., Gromiha, M.M., Ho, S.Y. (2007) Sequence analysis and rule development of predicting protein stability change upon mutation using decision tree model. J. Mol. Model. 13, 879–890.

    PubMed  CAS  Google Scholar 

  56. Zoete, V., Meuwly, M. (2006) Importance of individual side chains for the stability of a protein fold: computational alanine scanning of the insulin monomer. J. Comput. Chem. 27, 1843–1857.

    PubMed  CAS  Google Scholar 

  57. Cheng, J.L., Randall, A., Baldi, P. (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62, 1125–1132.

    PubMed  CAS  Google Scholar 

  58. Marrero-Ponce, Y., Medina-Marrero, R., Castillo-Garit, J.A., Romero-Zaldivar, V., Torrens, F., Castro, E.A. (2005) Protein linear indices of the ‘macromolecular pseudograph alpha-carbon atom adjacency matrix’ in bioinformatics. Part 1. Bioorg. Med. Chem. 13, 3003–3015.

    PubMed  CAS  Google Scholar 

  59. Cuff, A.L., Martin, A.C.R. (2004) Analysis of void volumes in proteins and application to the stability of the p53 tumour suppressor protein. J. Mol. Biol. 344, 1199–1209.

    PubMed  CAS  Google Scholar 

  60. Bordner, A.J., Abagyan, R.A. (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57, 400–413.

    PubMed  CAS  Google Scholar 

  61. Chaparro-Riggers, J.F., Polizzi, K.M., Bommarius, A.S. (2007) Better library design: data-driven protein engineering. Biotechnol. J. 2, 180–191.

    PubMed  Google Scholar 

  62. Bommarius, A.S., Broering, J.M., Chaparro-Riggers, J.F., Polizzi, K.M. (2006) High-throughput screening for enhanced protein stability. Curr. Opin. Biotechnol. 17, 606–610.

    PubMed  CAS  Google Scholar 

  63. Steipe, B. (2004) Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes. Methods Enzymol. 388, 176–186.

    PubMed  CAS  Google Scholar 

  64. Binz, H.K., Kohl, A., Plueckthun, A., Gruetter, M.G. (2006) Crystal structure of a consensus-designed ankyrin repeat protein. Proteins 65, 280–284.

    PubMed  CAS  Google Scholar 

  65. Winger, M., van Gunsteren, W.F. (2008) Use of molecular dynamics simulation for optimizing protein stability. Helv. Chim. Acta 91, 1605–1613.

    CAS  Google Scholar 

  66. Merz, T., Wetzel, S.K., Firbank, S., Plueckthun, A., Gruetter, M.G., Mittl, P.R.E. (2008) Stabilizing ionic interactions in a full-consensus ankyrin repeat protein. J. Mol. Biol. 376, 232–240.

    PubMed  CAS  Google Scholar 

  67. Tripp, K.W., Barrick, D. (2007) Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats. J. Mol. Biol. 365, 1187–1200.

    PubMed  CAS  Google Scholar 

  68. Kloss, E., Courtemanche, N., Barrick, D. (2008) Repeat protein folding: new insights into origins of cooperativity, stability and topology. Arch. Biochem. Biophys. 469, 83–89.

    PubMed  CAS  Google Scholar 

  69. Bae, E., Bannen, R.M., Phillips, G.N. (2008) Bioinformatic method for protein thermal stabilization by by structural entropy optimization. Proc. Natl. Acad. Sci. USA 105, 9594–9597.

    PubMed  CAS  Google Scholar 

  70. Gromiha, M.M. (2005) Distinct roles of conventional non-covalent and cation-pi interactions in protein stability. Polymer 46, 983–990.

    CAS  Google Scholar 

  71. Yin, S., Ding, F., Dokholyan, N.V. (2007) Modelling backbone flexibility improves protein stability estimation. Structure 15, 1567–1576.

    PubMed  CAS  Google Scholar 

  72. Wiederstein, M., Sippl, M.J. (2005) Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials. J. Mol. Biol. 345, 1199–1212.

    PubMed  CAS  Google Scholar 

  73. Saraboji, K., Gromiha, M.M., Ponnuswamy, M.N. (2006) Average assignment method for predicting the stability of protein mutants. Biopolymers 82, 80–92.

    PubMed  CAS  Google Scholar 

  74. Campos, L.A., Garcia-Mira, M.M, Godoy-Ruiz, R., Sanchez-Ruiz, J.M., Sancho, J. (2004) Do proteins always benefit from a stability increase? J. Mol. Biol. 344, 223–237.

    PubMed  CAS  Google Scholar 

  75. Yeh, J.I., Du, S.C., Tortajada, A., Paulo, J., Zhang, S.G. (2005) Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 44, 16912–16919.

    PubMed  CAS  Google Scholar 

  76. Mukaiyama, A., Koga,Y., Takano, K., Kanaya, S. (2008) Osmolyte effect on the stability and folding of a hyperthermophilic protein. Proteins 71, 110–118.

    PubMed  CAS  Google Scholar 

  77. Granata, V., Palladino, P., Tizzano, B., Negro, A., Berisio, R., Zagari, A. (2006) The effect of the osmolyte trimethylamine N-oxide on the stability of the prion protein at low pH. Biopolymers 82, 234–240.

    PubMed  CAS  Google Scholar 

  78. Faria, T.Q., Lima, J.C., Bastos, M., Macanita, A.L., Santos, H. (2004) Protein stabilization by osmolytes from thermophiles. J. Biol. Chem. 279, 48680–48691.

    PubMed  CAS  Google Scholar 

  79. Poddar, N.K., Ansari, Z.A., Singh, R.K.B., Moosavi-Movahedi, A.A., Ahmad, F. (2008) Effect of monomeric and oligomeric sugar osmolytes on delta G(D), the Gibbs energy of stabilization of the protein at different pH values. Biophys. Chem. 138, 120–129.

    PubMed  CAS  Google Scholar 

  80. Ortbauer, M., Popp, M. (2008) Functional role of polyhydroxy compounds on protein structure and thermal stability studied by circular dichroism spectroscopy. Plant Physiol. Biochem. 46, 428–434.

    PubMed  CAS  Google Scholar 

  81. Mishra, R., Bhat, R., Seckler, R. (2007) Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Biol. Chem. 388, 797–804.

    PubMed  CAS  Google Scholar 

  82. Pais, T.M., Lamosa, P., dos Santos, W., LeGall, J., Turner, D.L., Santos, H. (2005) Structural determinants of protein stabilization by solutes. FEBS J. 272, 999–1011.

    PubMed  CAS  Google Scholar 

  83. Bolen, D.W. (2004) Effects of naturally occurring osmolytes on protein stability and solubility. Methods 34, 312–322.

    PubMed  CAS  Google Scholar 

  84. Street, T.O., Bolen, D.W., Rose, G.D. (2006) A molecular mechanism for osmolyte-induced protein stability. Proc. Nat. Acad. Sci. USA 103, 13997–14002.

    PubMed  CAS  Google Scholar 

  85. Auton, M., Ferreon, A.C.M., Bolen, D.W. (2006) Metrics that differentiate the origins of osmolyte effects on protein stability. J. Mol. Biol. 361, 983–992.

    PubMed  CAS  Google Scholar 

  86. Holthauzen, L.M.F., Bolen, D.W. (2007) Mixed osmolytes: the degree to which one osmolyte affects the protein stabilizing ability of another. Protein Sci. 16, 293–298.

    PubMed  Google Scholar 

  87. Wang, W., Wang, Y.J., Wang, D.Q. (2008) Dual effects of Tween 80 on protein stability. Int. J. Pharm. 347, 31–38.

    PubMed  CAS  Google Scholar 

  88. Rochu, D., Chabriere, E., Renault, F., Clery-Barraud, C., Chabriere, E., Masson, P. (2007) Stability of highly purified human paraoxonase (PON1): association with human phosphate binding protein (HPBP) is essential for preserving its active conformation(s). Biochem. Soc. Trans. 35, 1616–1620.

    PubMed  CAS  Google Scholar 

  89. Rochu, D., Renault, F., Elias, M., Clery-Barraud, C., Masson, P. (2007b) Stabilization of the active form(s) of human paraoxonase by human phosphate-binding protein. Biochim. Biophys. Acta 1774, 874–883.

    PubMed  CAS  Google Scholar 

  90. Byrne, N., Wang, L.M., Belieres, J.P., Angell, C.A. (2007) Reversible folding-unfolding, aggregation protection and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chem. Commun. (Camb) (41), 2714–2716.

    Google Scholar 

  91. Frokjaer, S., Otzen, D.E. (2005) Protein drug stability: a formulation challenge. Nature Rev. Drug Discov. 4, 298–306.

    PubMed  CAS  Google Scholar 

  92. Torres, M.P, Determan, A.S., Anderson, G.L., Mallapragada, S.K., Narasimhan, B. (2007) Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 28, 108–116.

    PubMed  CAS  Google Scholar 

  93. Sheldon, R. (2007) Crosslinked enzyme aggregates (CLEA®s): stable and recyclable biocatalysts. Biochem. Soc. Trans. 35, 1583–1587.

    PubMed  CAS  Google Scholar 

  94. Illanes, A., Wilson, L., Altamirano, C., Cabrera, Z., Alvarez, L., Aguirre, C. (2007) Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450. Enzyme Microb. Technol. 40, 195–203.

    CAS  Google Scholar 

  95. Sangeetha, K., Abraham, T.E. (2008) Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications. Int. J. Biol. Macromol. 43, 314–319.

    PubMed  CAS  Google Scholar 

  96. Kreiner, M., Fernandes, J.F.A., O’Farrell, N., Halling, P.J., Parker, M.C. (2005) Stability of protein-coated microcrystals in organic solvents. J. Mol. Catal. B 33, 65–72.

    CAS  Google Scholar 

  97. Abian, O., Grazu, V., Hermoso, J., Gonzalez, R., Garcia, J.L., Fernandez-Lafuente, R., Guisan, J.M. (2004) Stabilization of penicillin G acylase from Escherichia coli: site-directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl. Environ. Microbiol. 70, 1249–1251.

    PubMed  CAS  Google Scholar 

  98. Irazoqui, G., Giacomini, C., Batista-Viera, F., Brena, B.F. (2007) Hydrophilization of immobilized model enzymes suggests a widely applicable method for enhancing protein stability in polar organic co-solvents. J. Mol. Catal. B 46, 43–51.

    CAS  Google Scholar 

  99. Koutsopoulos, S., van der Oost, J., Norde, W. (2004) Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability. Langmuir 20, 6401–6406.

    PubMed  CAS  Google Scholar 

  100. Knotts, T.A., Rathore, N., de Pabolz, J.J. (2008) An entropic perspective of protein stability on surfaces. Biophys. J. 94, 4473–4483.

    PubMed  CAS  Google Scholar 

  101. Kim, Y.H., Stites, W.E. (2008) Effects of excluded volume upon protein stability in covalently cross-linked proteins with variable linker lengths. Biochemistry 47, 8804–8814.

    PubMed  CAS  Google Scholar 

  102. Shental-Bechor, D., Levy, Y. (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. USA 105, 8256–8261.

    PubMed  CAS  Google Scholar 

  103. Spiriti, J., Bogani, F., van der Vaart, A., Ghirlanda, G. (2008) Modulation of protein stability by O-glycosylation in a designed Gc-MAF analog. Biophys. Chem. 134, 157–167.

    PubMed  CAS  Google Scholar 

  104. Rathore, N., Rajan, R.S. (2008) Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol. Prog. 24, 504–514.

    PubMed  CAS  Google Scholar 

  105. Klibanov, A.M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 241–246.

    PubMed  CAS  Google Scholar 

  106. Godfrey, T., West, S. (1996) Industrial enzymology, 2nd ed. Macmillan, London.

    Google Scholar 

  107. Breuer, M., Ditrich, K., Habicher, T., Hauer, B., Kesseler, M., Stuermer, R., Zelinski, T. (2004) Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. Engl. 43, 788–824.

    PubMed  CAS  Google Scholar 

  108. Miyazaki, M., Maeda, H. (2006) Microchannel enzyme reactors and their applications for processing. Trends Biotechnol. 24, 463–470.

    PubMed  CAS  Google Scholar 

  109. Schmid, A., Hollmann, F., Park, J.B., et al. (2002) The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13, 359–366.

    PubMed  CAS  Google Scholar 

  110. Van den Burg, B., Vriend, G., Veltman, O.R., Eijsink, V.G.H. (1998) Engineering an enzyme to resist boiling. Proc. Natl. Acad. Sci. USA 95, 2056–2060.

    PubMed  Google Scholar 

  111. Riddles, P.W., Blakely, R.L., Zerner, B. (1983) Reassessment of Ellman’s reagent. Methods Enzymol. 91, 49–60.

    PubMed  CAS  Google Scholar 

  112. Roig, M.G., Kennedy, J.F. (1992) Perspectives for chemical modifications of enzymes. CRC Crit. Rev. Biotechnol. 12, 391–412.

    CAS  Google Scholar 

  113. Riordan, J.F., Vallee, B.L. (1972a) Reactions with N-ethylmaleimide and p-mercuribenzoate. Methods Enzymol. 25, 449–456.

    CAS  Google Scholar 

  114. Fields, R. (1972) The rapid determination of amino groups with TNBS. Methods Enzymol. 25, 464–468.

    CAS  Google Scholar 

  115. Inman, J.K., Perham, R.N., DuBois, G.C., et al. (1983) Amidination. Methods Enzymol. 91, 559–569.

    PubMed  CAS  Google Scholar 

  116. Klapper, M.H., Klotz, I.M. (1972) Acylation with dicarboxylic acid anhydrides. Methods Enzymol. 25, 531–536.

    CAS  Google Scholar 

  117. Jentoft, N., Dearborn, D.G. (1983) Protein labeling by reductive alkylation. Methods Enzymol. 91, 570–579.

    PubMed  CAS  Google Scholar 

  118. Yankeelov, J.A. (1972) Modification of arginine by diketones. Methods Enzymol. 25, 566–579.

    CAS  Google Scholar 

  119. Pande, C.S., Pelzig, M., Glass, J.D. (1980) Camphorquinone-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues. Proc. Natl. Acad. Sci. USA 77, 895–899.

    PubMed  CAS  Google Scholar 

  120. Dominici, P., Tancini, B., Voltattorni, C.B. (1985) Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate. J.Biol. Chem. 260, 10583–10589.

    PubMed  CAS  Google Scholar 

  121. Carraway, K.L., Koshland, D.E. (1972) Carbodiimide modification of proteins. Methods Enzymol. 25, 616–623.

    CAS  Google Scholar 

  122. Wilcox, P.E. (1972) Esterification. Methods Enzymol. 25, 596–616.

    CAS  Google Scholar 

  123. Riordan, J.F., Vallee, B.L. (1972) Nitration with tetranitromethane. Methods Enzymol. 25, 515–521.

    CAS  Google Scholar 

  124. Morrison, M. (1970) Iodination of tyrosine: isolation of lactoperoxidase (bovine). Methods Enzymol. 17, 653–660.

    Google Scholar 

  125. Spande, T.F., Witkop, B. (1967) Determination of the tryptophan content of protein with N-bromosuccinimide. Methods Enzymol. 11, 498–532.

    CAS  Google Scholar 

  126. Neumann, N.P. (1972) Oxidation with hydrogen peroxide. Methods Enzymol. 25, 393–401.

    CAS  Google Scholar 

  127. Lundblad, R.L. (2005) Chemical reagents for protein modification, 3rd ed. CRC, Boca Raton. ISBN 9780849319839.

    Google Scholar 

  128. Means, G.E., Feeney, R.E. (1990) Chemical modification of proteins: history and applications. Bioconjug. Chem. 1, 2–12.

    PubMed  CAS  Google Scholar 

  129. Sadana, A. (1988) Enzyme deactivation. Biotechnol. Adv. 6, 349–446.

    PubMed  CAS  Google Scholar 

  130. Wold, F. (1972) Bifunctional reagents. Methods Enzymol. 25, 623–651.

    CAS  Google Scholar 

Download references

Acknowledgement

The author thanks Dr Barry J. Ryan for helpful and informative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciarán Ó’Fágáin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ó’Fágáin, C. (2011). Engineering Protein Stability. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 681. Humana Press. https://doi.org/10.1007/978-1-60761-913-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-913-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-912-3

  • Online ISBN: 978-1-60761-913-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics