Skip to main content

Tag Removal by Site-Specific Cleavage of Recombinant Fusion Proteins

  • Protocol
  • First Online:
Book cover Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 681))

Abstract

Where an affinity tag has served its purpose it may become desirable to remove it from the protein of interest. This chapter describes the removal of such fusion partners from the intended protein product by cleavage with site-specific endoproteases. Methods to achieve proteolytic cleavage of the fusion proteins are provided, along with techniques for optimising the yield of authentic product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marston, F.A. (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240, 1–12.

    PubMed  CAS  Google Scholar 

  2. Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M. and Nygren, P.A. (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11, 1–16.

    Article  PubMed  CAS  Google Scholar 

  3. Schechter, I. and Berger, A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.

    Article  PubMed  CAS  Google Scholar 

  4. Maroux, S., Baratti, J. and Desnuelle, P. (1971) Purification and specificity of porcine enterokinase. J. Biol. Chem. 246, 5031–5039.

    PubMed  CAS  Google Scholar 

  5. Prickett, K.S., Amberg, D.C. and Hopp, T.P. (1989) A calcium-dependent antibody for identification and purification of recombinant proteins. Biotechniques. 7, 580–587.

    PubMed  CAS  Google Scholar 

  6. Light, A. and Janska, H. (1989) Enterokinase (enteropeptidase): comparative aspects. Trends Biochem. Sci. 14, 110–112.

    Article  PubMed  CAS  Google Scholar 

  7. Nagai, K. and Thøgersen, H.C. (1984) Gen-eration of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. Nature 309, 810–812.

    Article  PubMed  CAS  Google Scholar 

  8. Blomback, B., Blomback, M., Hessel, B. and Iwanaga, S. (1967) Structure of N-terminal fragments of fibrinogen and specificity of thrombin. Nature 215, 1445–1448.

    Article  PubMed  CAS  Google Scholar 

  9. Chang, J.-Y. (1985) Thrombin specificity. Eur. J. Biochem. 151, 217–224.

    Article  PubMed  CAS  Google Scholar 

  10. Forsberg, G., Baastrup, B., Rondahl, H., Holmgren, E., Pohl, G., Hartmanis, M. and Lake, M. (1992) An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied of des(1-3)insulin-like growth factor I. J. Prot. Chem. 11, 201–211.

    Article  CAS  Google Scholar 

  11. Carter, P. and Wells, J.A. (1987) Engineering enzyme specificity by “substrate-assisted catalysis”. Science 237, 394–399.

    Article  PubMed  CAS  Google Scholar 

  12. Carter, P., Nilsson, B., Burnier, J.P., Burdick, D. and Wells, J.A. (1989) Engineering subtilisin BPN’ for site-specific proteolysis. Proteins 6, 240–248.

    Article  PubMed  CAS  Google Scholar 

  13. Allison, R., Johnston, R.E. and Dougherty, W.G. (1986) The nucleotide sequence of the ­coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154, 9–20.

    Article  PubMed  CAS  Google Scholar 

  14. Lawson, M.A. and Semler, B.L. (1991) Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proc. Natl. Acad. Sci. U.S.A. 88, 9919–9923.

    Article  PubMed  CAS  Google Scholar 

  15. Carrington, J.C. and Dougherty, W.G. (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. U.S.A. 85, 3391–3395.

    Article  PubMed  CAS  Google Scholar 

  16. Dougherty, W.G. and Parks, T.D. (1989) Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology. 172, 145–155.

    Article  PubMed  CAS  Google Scholar 

  17. Cordingley, M.G., Callahan, P.L., Sardana, V.V., Garsky, V.M. and Colonno, R.J. (1990) Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro. J. Biol. Chem. 265, 9062–9065.

    PubMed  CAS  Google Scholar 

  18. Kapust, R.B., Tozer, J., Copeland, T.D. and Waugh, D.S. (2002) The P1’ specificity of tobacco etch virus protease. Biochem. Biophys. Res. Comm. 294, 949–955.

    Article  PubMed  CAS  Google Scholar 

  19. Baratti, J., Maroux, S. and Louvard, D. (1973) Effect of ionic strength and calcium ions on the activation of trypsinogen by enterokinase. Biochim. Biophys. Acta. 321, 632–638.

    PubMed  CAS  Google Scholar 

  20. Forstner, M., Peters-Libeu, C., Contreras-Forrest, E., Newhouse, Y., Knapp, M., Rupp, B. and Weisgraber, K.H. (1999) Carboxyl-terminal domain of human apolipoprotein E: expression, purification, and crystallization. Prot. Expr. Purif. 17, 267–272.

    Article  CAS  Google Scholar 

  21. Zhang, H., Yuan, Q., Zhu, Y. and Ma, R. (2005) Expression and preparation of recombinant hepcidin in Escherichia coli. Prot. Expr. Purif. 41, 409–416.

    Article  CAS  Google Scholar 

  22. Lien, S., Milner, S.J., Graham, D.L., Wallace, J.C. and Francis, G.L. (2001) Linkers for improved cleavage of fusion proteins with an engineered α-lytic protease. Biotechnol. Bioeng. 74, 335–343.

    Article  PubMed  CAS  Google Scholar 

  23. Francis, G.L., Aplin, S.E., Milner, S.J., McNeil, K.A., Ballard, F.J. and Wallace, J.C. (1993) Insulin-like growth factor (IGF)-II binding to IGF-binding proteins and IGF receptors is modified by deletion of the N-terminal hexapeptide or substitution of arginine for glutamate-6 in IGF-II. Biochem. J. 293, 713–719.

    PubMed  CAS  Google Scholar 

  24. Holowachuk, E.W. and Ruhoff, M.S. (1995) Biologically active recombinant rat granulocyte macrophage colony-stimulating factor produced in Escherichia coli. Prot. Expr. Purif. 6, 588–596.

    Article  CAS  Google Scholar 

  25. Polyak, S.W., Forsberg, G., Forbes, B.E., McNeil, K.A., Aplin, S.E. and Wallace, J.C. (1998) Introduction of spacer peptides N-terminal to a cleavage recognition motif in recombinant fusion proteins can improve site-specific cleavage. Prot. Eng. 10, 615–619.

    Google Scholar 

  26. Hakes, D.J. and Dixon, J.E. (1992) New vectors for high level expression of recombinant proteins in bacteria. Anal. Biochem. 202, 293–298.

    Article  PubMed  CAS  Google Scholar 

  27. Allison, R.F., Sorenson, J.C., Kelly, M.E., Armstrong, F.B. and Dougherty, W.G. (1985) Sequence determination of the capsid protein gene and flanking regions of the tobacco etch virus: evidence for synthesis and processing of a polyprotein in potyvirus genome expression. Proc. Natl. Acad. Sci. U.S.A. 82, 3969–3972.

    Article  PubMed  CAS  Google Scholar 

  28. Stanway, G., Hughes, P.J., Mountford, R.C., Minor, D.P. and Almond, J.W. (1984) The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucl. Acids. Res. 12, 7859–7875.

    Article  PubMed  CAS  Google Scholar 

  29. Dougherty, W.G., Parks, T.D., Cary, S.M., Bazan, J.F. and Fletterick, R.J. (1989) Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology. 172, 302–310.

    Article  PubMed  CAS  Google Scholar 

  30. Nallamsetty, S., Kapust, R.B., Tozser, J., Cherry, S., Tropea, J.E., Copeland, T.D. and Waugh, D.S. (2004) Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Prot. Expr. Purif. 38, 108–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Charlton, A., Zachariou, M. (2011). Tag Removal by Site-Specific Cleavage of Recombinant Fusion Proteins. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 681. Humana Press. https://doi.org/10.1007/978-1-60761-913-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-913-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-912-3

  • Online ISBN: 978-1-60761-913-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics