Skip to main content

NKT Cell Responses to Glycolipid Activation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 626))

Abstract

NKT cells are a distinct lineage of T lymphocytes that are usually identified by the co-expression of the semi-invariant CD1d-restricted αβ TCR and the NK1.1 allelic marker of NK lineage receptors in the C57BL/6 mice and related strains. NKT cells can be subdivided based on CD4/CD8 expression and on tissue of origin. NKT cells express significantly the TCR gene products Vα24 JαQ in humans, the homolog of mouse Vα14 Jα18, paired with Vβ11, the homolog of mouse Vβ8.2. NKT cells are most frequent in liver (up to 30% of T cells in mice and approximately 4% of hepatic T cells in human), bone marrow, and thymus and represent a smaller proportion of T cells in other tissues including spleen, lymph nodes, blood, and lung. NKT cells recognize a broad array of glycolipids in the context of CD1d presentation, and many studies have characterized a cascade of functions following in vitro and in vivo stimulation by α-GalCer, including production of high levels of immune-regulatory cytokines and bystander activation of several cell types including NK, B, T, and dendritic cells. Both in vitro and in vivo methods have been developed for the study of NKT responses to glycolipid presentation by CD1d. In practice, CD1d-glycolipid-loaded tetramers would most reliably identify these cells. In vitro, splenocytes can be used to monitor cytokine release as this population contains all the cells necessary for sequestering, loading onto CD1d molecules, and presentation of glycolipids to NKT cells. Another system involves the use of NKT cell hybridoma and CD1d coated onto plastic plates to measure responses limited to NKT cells more precisely. In vivo, responses are typically measured by injecting the glycolipid into mice and monitoring plasma cytokine levels or DC maturation in the spleen. This chapter describes methods that can be used to identify NKT cells and to asses in vitro and in vivo their activation and expansion.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bendelac, A., Matzinger, P., Seder, R. A., Paul, W. E., Schwartz, R. H. (1992) Activation events during thymic selection. J Exp Med 175, 731–742.

    Article  PubMed  CAS  Google Scholar 

  2. Bendelac, A., Schwartz, R. H. (1991) CD4+ and CD8+ T cells acquire specific lymphokine secretion potentials during thymic maturation. Nature 353, 68–71.

    Article  PubMed  CAS  Google Scholar 

  3. Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M., Lanzavecchia, A. (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J Exp Med 180, 1171–1176.

    Article  PubMed  CAS  Google Scholar 

  4. Hayakawa, K., Lin, B. T., Hardy, R. R. (1992) Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the V beta 8 T cell receptor gene family. J Exp Med 176, 269–274.

    Article  PubMed  CAS  Google Scholar 

  5. Porcelli, S., Yockey, C. E., Brenner, M. B., Balk, S. P. (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178, 1–16.

    Article  PubMed  CAS  Google Scholar 

  6. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J., Van Kaer, L. (2004) NKT cells: what’s in a name?. Nat Rev Immunol 4, 231–237.

    Article  PubMed  CAS  Google Scholar 

  7. Bendelac, A. (1995) Mouse NK1+ T cells. Curr Opin Immunol 7, 367–374.

    Article  PubMed  CAS  Google Scholar 

  8. Bendelac, A., Rivera, M. N., Park, S. H., Roark, J. H. (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15, 535–562.

    Article  PubMed  CAS  Google Scholar 

  9. MacDonald, H. R. (1995) NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med 182, 633–638.

    Article  PubMed  CAS  Google Scholar 

  10. Ortaldo, J. R., Winkler-Pickett, R., Mason, A. T., Mason, L. H. (1998) The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J Immunol 160, 1158–1165.

    PubMed  CAS  Google Scholar 

  11. Gumperz, J. E., Miyake, S., Yamamura, T., Brenner, M. B. (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195, 625–636.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, P. T., Benlagha, K., Teyton, L., Bendelac, A. (2002) Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 195, 637–641.

    Article  PubMed  CAS  Google Scholar 

  13. Crowe, N. Y., Coquet, J. M., Berzins, S. P., Kyparissoudis, K., Keating, R., Pellicci, D. G., Hayakawa, Y., Godfrey, D. I., Smyth, M. J. (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202, 1279–1288.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshimoto, T., Bendelac, A., Hu-Li, J., Paul, W. E. (1995) Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 92, 11931–11934.

    Article  PubMed  CAS  Google Scholar 

  15. Gombert, J. M., Herbelin, A., Tancrede-Bohin, E., Dy, M., Carnaud, C., Bach, J. F. (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 26, 2989–2998.

    Article  PubMed  CAS  Google Scholar 

  16. Baxter, A. G., Kinder, S. J., Hammond, K. J., Scollay, R., Godfrey, D. I. (1997) Association between alphabetaTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, P. T., Putnam, A., Benlagha, K., Teyton, L., Gottlieb, P. A., Bendelac, A. (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110, 793–800.

    PubMed  CAS  Google Scholar 

  18. Brossay, L., Jullien, D., Cardell, S., Sydora, B. C., Burdin, N., Modlin, R. L., Kronenberg, M. (1997) Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 159, 1216–1224.

    PubMed  CAS  Google Scholar 

  19. Roark, J. H., Park, S. H., Jayawardena, J., Kavita, U., Shannon, M., Bendelac, A. (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160, 3121–3127.

    PubMed  CAS  Google Scholar 

  20. Bendelac, A. (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182, 2091–2096.

    Article  PubMed  CAS  Google Scholar 

  21. Geissmann, F., Cameron, T. O., Sidobre, S., Manlongat, N., Kronenberg, M., Briskin, M. J., Dustin, M. L., Littman, D. R. (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3, e113.

    Article  PubMed  Google Scholar 

  22. Kobayashi, E., Motoki, K., Uchida, T., Fukushima, H., Koezuka, Y. (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7, 529–534.

    PubMed  CAS  Google Scholar 

  23. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., et al. (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  24. Sidobre, S., Naidenko, O. V., Sim, B. C., Gascoigne, N. R., Garcia, K. C., Kronenberg, M. (2002) The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 169, 1340–1348.

    PubMed  CAS  Google Scholar 

  25. Cantu, C., III, Benlagha, K., Savage, P. B., Bendelac, A., Teyton, L. (2003) The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity, low specificity for CD1d, high affinity for alpha beta TCRs. J Immunol 170, 4673–4682.

    PubMed  CAS  Google Scholar 

  26. Zhou, D., Mattner, J., Cantu, C., 3rd, Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., et al. (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789.

    Article  PubMed  CAS  Google Scholar 

  27. Schumann, J., Mycko, M. P., Dellabona, P., Casorati, G., MacDonald, H. R. (2006) Cutting edge: influence of the TCR Vbeta domain on the selection of semi-invariant NKT cells by endogenous ligands. J Immunol 176, 2064–2068.

    PubMed  Google Scholar 

  28. Xia, C., Yao, Q., Schumann, J., Rossy, E., Chen, W., Zhu, L., Zhang, W., De Libero, G., Wang, P. G. (2006) Synthesis and biological evaluation of alpha-galactosylceramide (KRN7000) and isoglobotrihexosylceramide (iGb3). Bioorg Med Chem Lett 16, 2195–2199.

    Article  PubMed  CAS  Google Scholar 

  29. Tupin, E., Kinjo, Y., Kronenberg, M. (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5, 405–417.

    Article  PubMed  CAS  Google Scholar 

  30. Van Kaer, L. (2004) Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol Res 30, 139–153.

    Article  PubMed  Google Scholar 

  31. Eberl, G., MacDonald, H. R. (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30, 985–992.

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura, H., Iwakabe, K., Yahata, T., Nishimura, S., Ohta, A., Ohmi, Y., Sato, M., Takeda, K., et al. (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  33. Carnaud, C., Lee, D., Donnars, O., Park, S. H., Beavis, A., Koezuka, Y., Bendelac, A. (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163, 4647–4650.

    PubMed  CAS  Google Scholar 

  34. Nishimura, T., Kitamura, H., Iwakabe, K., Yahata, T., Ohta, A., Sato, M., Takeda, K., Okumura, K., et al. (2000) The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 12, 987–994.

    Article  PubMed  CAS  Google Scholar 

  35. Savage, P. B., Teyton, L., Bendelac, A. (2006) Glycolipids for natural killer T cells. Chem Soc Rev 35, 771–779.

    Article  PubMed  CAS  Google Scholar 

  36. Fujii, S., Shimizu, K., Kronenberg, M., Steinman, R. M. (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3, 867–874.

    Article  PubMed  CAS  Google Scholar 

  37. Eberl, G., MacDonald, H. R. (1998) Rapid death and regeneration of NKT cells in anti-CD3epsilon- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 9, 345–353.

    Article  PubMed  CAS  Google Scholar 

  38. Parekh, V. V., Wilson, M. T., Olivares-Villagomez, D., Singh, A. K., Wu, L., Wang, C. R., Joyce, S., Van Kaer, L. (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115, 2572–2583.

    Article  PubMed  CAS  Google Scholar 

  39. Uldrich, A. P., Crowe, N. Y., Kyparissoudis, K., Pellicci, D. G., Zhan, Y., Lew, A. M., Bouillet, P., Strasser, A., et al. (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175, 3092–3101.

    PubMed  CAS  Google Scholar 

  40. Kashiwase, K., Kikuchi, A., Ando, Y., Nicol, A., Porcelli, S. A., Tokunaga, K., Omine, M., Satake, M., et al. (2003) The CD1d natural killer T-cell antigen presentation pathway is highly conserved between humans and rhesus macaques. Immunogenetics 54, 776–781.

    PubMed  CAS  Google Scholar 

  41. Zhou, D., Cantu, C., III, Sagiv, Y., Schrantz, N., Kulkarni, A. B., Qi, X., Mahuran, D. J., Morales, C. R., et al. (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josianne Nitcheu Tefit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tefit, J.N., Davies, G., Serra, V. (2010). NKT Cell Responses to Glycolipid Activation. In: Davies, G. (eds) Vaccine Adjuvants. Methods in Molecular Biology, vol 626. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-585-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-585-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-584-2

  • Online ISBN: 978-1-60761-585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics