Skip to main content

An Overview of Bioinformatics Tools and Resources in Allergy

  • Protocol
  • First Online:
Food Allergens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1592))

Abstract

The rapidly increasing number of characterized allergens has created huge demands for advanced information storage, retrieval, and analysis. Bioinformatics and machine learning approaches provide useful tools for the study of allergens and epitopes prediction, which greatly complement traditional laboratory techniques. The specific applications mainly include identification of B- and T-cell epitopes, and assessment of allergenicity and cross-reactivity. In order to facilitate the work of clinical and basic researchers who are not familiar with bioinformatics, we review in this chapter the most important databases, bioinformatic tools, and methods with relevance to the study of allergens.

*These authors contributed equally to this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larche M, Akdis CA, Valenta R (2006) Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 6(10):761–771

    Article  CAS  PubMed  Google Scholar 

  2. Bharadwaj M, Illing P, Theodossis A et al (2012) Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu Rev Pharmacol Toxicol 52:401–401

    Article  CAS  PubMed  Google Scholar 

  3. Tanabe S (2007) Epitope peptides and immunotherapy. Curr Protein Pept Sci 8(1):109–118

    Article  CAS  PubMed  Google Scholar 

  4. Lin J, Bardina L, Shreffler WG et al (2009) Development of a novel peptide microarray for large-scale epitope mapping of food allergens. J Allergy Clin Immunol 124(2):315–322 322 e311–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayuso R, Sanchez-Garcia S, Pascal M et al (2012) Is epitope recognition of shrimp allergens useful to predict clinical reactivity? Clin Exp Allergy 42(2):293–304

    Article  CAS  PubMed  Google Scholar 

  6. Mou C, Zhang S, Lin J et al (2002) EST analysis of mRNAs expressed in neurula of Chinese amphioxus. Biochem Biophys Res Commun 299(1):74–84

    Article  CAS  PubMed  Google Scholar 

  7. Fu Z, Lu Y, Ye L et al (2002) Construction and application of a large scale cDNA sequences analysis system based on Unix. Acta Sci Nat Univ Sunyatseni 41(5):60–63

    CAS  Google Scholar 

  8. Liu Z, Lin J, Fu Z et al (2001) A sequence-based typing method for HLA-DPB1 genotyping. Acta Sci Nat Univ Sunyatseni 40(5):83–87

    CAS  Google Scholar 

  9. Fu Z (2008) Post-structural genomics: correlate protein sequence, structure, and function. ProQuest, Ann Arbor, MI

    Google Scholar 

  10. Fu Z, Lin J (2015) Applying supervised machine learning in bioinformatics analysis. In: Clary TS (ed) Horizons in computer science research, vol 12. Nova, New York, NY

    Google Scholar 

  11. Saigo H, Vert JP, Ueda N et al (2004) Protein homology detection using string alignment kernels. Bioinformatics 20(11):1682–1689

    Article  CAS  PubMed  Google Scholar 

  12. Hakenberg J, Bickel S, Plake C et al (2005) Systematic feature evaluation for gene name recognition. BMC Bioinformatics 6(Suppl 1):S9

    Article  PubMed  PubMed Central  Google Scholar 

  13. El-manzalawy YM (2008) Machine leearning approaches for epitope prediction. Graduate theses and dissertations, Iowa State University

    Google Scholar 

  14. Lin J, Bruni FM, Fu Z et al (2012) A bioinformatics approach to identify patients with symptomatic peanut allergy using peptide microarray immunoassay. J Allergy Clin Immunol 129(5):1321–1328 e1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 11(5–6):203–209

    Article  CAS  PubMed  Google Scholar 

  16. Aalberse RC (2000) Structural biology of allergens. J Allergy Clin Immunol 106(2):228–238

    Article  CAS  PubMed  Google Scholar 

  17. Brusic V, Petrovsky N, Gendel SM et al (2003) Computational tools for the study of allergens. Allergy 58(11):1083–1092

    Article  CAS  PubMed  Google Scholar 

  18. Saha S, Raghava GP (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34((Web Server issue)):W202–W209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino-acid-sequences. Proc Natl Acad Sci U S Am Biol Sci 78(6):3824–3828

    Article  CAS  Google Scholar 

  20. Rosenberg HF, Dyer KD (1995) Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem 270(50):30234

    CAS  PubMed  Google Scholar 

  21. Pellequer JL, Westhof E, Van Regenmortel MH (1991) Predicting location of continuous epitopes in proteins from their primary structures. Methods Enzymol 203:176–201

    Article  CAS  PubMed  Google Scholar 

  22. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  23. Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148

    CAS  PubMed  Google Scholar 

  24. Levitt M (1978) Conformational preferences of amino acids in globular proteins. Biochemistry 17(20):4277–4285

    Article  CAS  PubMed  Google Scholar 

  25. Emini EA, Hughes JV, Perlow DS et al (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20(2):75–82

    Article  CAS  PubMed  Google Scholar 

  27. Kolaskar AS, Kulkarni-Kale U (1999) Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261(1):31–42

    Article  CAS  PubMed  Google Scholar 

  28. Doytchinova IA, Flower DR (2001) Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J Med Chem 44(22):3572–3581

    Article  CAS  PubMed  Google Scholar 

  29. Schueler-Furman O, Altuvia Y, Sette A et al (2000) Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci 9(9):1838–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Logean A, Rognan D (2002) Recovery of known T-cell epitopes by computational scanning of a viral genome. J Comput Aided Mol Des 16(4):229–243

    Article  CAS  PubMed  Google Scholar 

  31. Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  CAS  PubMed  Google Scholar 

  33. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    Article  CAS  PubMed  Google Scholar 

  34. Donnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res 34(Web Server issue):W194–W197.

    Google Scholar 

  35. Murugan N, Dai Y (2005) Prediction of MHC class II binding peptides based on an iterative learning model. Immunol Res 1:6

    Google Scholar 

  36. Doytchinova IA, Taylor P, Flower DR (2003) Proteomics in vaccinology and immunobiology: an informatics perspective of the immunone. J Biomed Biotechnol 2003(5):267–290

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu K, Petrovsky N, Schonbach C et al (2002) Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med 8(3):137–148

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhasin M, Raghava GP (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22(23–24):3195–3204

    Article  CAS  PubMed  Google Scholar 

  39. El-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunol Res 6(Suppl 2):S2

    Google Scholar 

  40. Sollner J (2006) Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19(3):209–214

    Article  PubMed  Google Scholar 

  41. FAO/WHO (2001) Allergenicity of genetically modified foods. Report of a joint FAO/WHO expert consultation on allergenicity of foods derived from biotechnology. FAO/WHO, Rome

    Google Scholar 

  42. Ivanciuc O, Schein CH, Braun W (2003) SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 31(1):359–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stadler MB, Stadler BM (2003) Allergenicity prediction by protein sequence. FASEB J 17(9):1141–1143

    CAS  PubMed  Google Scholar 

  44. Bjorklund AK, Soeria-Atmadja D, Zorzet A et al (2005) Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins. Bioinformatics 21(1):39–50

    Article  PubMed  Google Scholar 

  45. Wang J, Yu Y, Zhao Y et al (2013) Evaluation and integration of existing methods for computational prediction of allergens. BMC Bioinformatics 14(Suppl 4):S1

    Article  CAS  Google Scholar 

  46. Radauer C, Nandy A, Ferreira F et al (2014) Update of the WHO/IUIS allergen nomenclature database based on analysis of allergen sequences. Allergy 69(4):413–419

    Article  CAS  PubMed  Google Scholar 

  47. Mari A, Scala E, Palazzo P et al (2006) Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell Immunol 244(2):97–100

    Article  CAS  PubMed  Google Scholar 

  48. Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24(12):1459–1460

    Article  CAS  PubMed  Google Scholar 

  49. Rubinstein ND, Mayrose I, Martz E et al (2009) Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 10:287

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kringelum JV, Lundegaard C, Lund O et al (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15(11):2558–2567

    Article  PubMed  PubMed Central  Google Scholar 

  52. Qi T, Qiu T, Zhang Q et al (2014) SEPPA 2.0—more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen. Nucleic Acids Res 42((Web Server issue)):59–63

    Article  Google Scholar 

  53. Liang S, Zheng D, Zhang C et al (2009) Prediction of antigenic epitopes on protein surfaces by consensus scoring. BMC Bioinformatics 10:302

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liang S, Zheng D, Standley DM et al (2010) EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinformatics 11:381

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yao B, Zheng D, Liang S et al (2013) Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One 8(4):e62249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moreau V, Granier C, Villard S et al (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22(9):1088–1095

    Article  CAS  PubMed  Google Scholar 

  57. Huang J, Gutteridge A, Honda W et al (2006) MIMOX: a web tool for phage display based epitope mapping. BMC Bioinformatics 7:451

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mayrose I, Penn O, Erez E et al (2007) Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23(23):3244–3246

    Article  CAS  PubMed  Google Scholar 

  59. Mayrose I, Shlomi T, Rubinstein ND et al (2007) Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35(1):69–78

    Article  CAS  PubMed  Google Scholar 

  60. Bublil EM, Freund NT, Mayrose I et al (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 68(1):294–304

    Article  CAS  PubMed  Google Scholar 

  61. Huang YX, Bao YL, Guo SY et al (2008) Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinformatics 9:538

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen WH, Sun PP, Lu Y et al (2011) MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries. BMC Bioinformatics 12:199

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huang J, Ru B, Dai P (2011) Bioinformatics resources and tools for phage display. Molecules 16(1):694–709

    Article  CAS  PubMed  Google Scholar 

  64. Negi SS, Braun W (2009) Automated detection of conformational epitopes using phage display Peptide sequences. Bioinf Biol Insights 3:71–81

    CAS  Google Scholar 

  65. Sun P, Ju H, Liu Z et al (2013) Bioinformatics resources and tools for conformational B-cell epitope prediction. Comput Math Methods Med 2013:943636

    PubMed  PubMed Central  Google Scholar 

  66. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    Article  CAS  PubMed  Google Scholar 

  67. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunol Res 2:2

    Google Scholar 

  68. Toseland CP, Clayton DJ, McSparron H et al (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunol Res 1(1):4

    Google Scholar 

  69. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saha S, Bhasin M, Raghava GPS (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79–79

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vita R, Overton JA, Greenbaum JA et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43((Database issue)):D405–D412

    Article  PubMed  Google Scholar 

  72. Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33((Web Server issue)):W168–W171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valuev VP, Afonnikov DA, Ponomarenko MP et al (2002) ASPD (Artificially selected proteins/peptides database): a database of proteins and peptides evolved in vitro. Nucleic Acids Res 30(1):200–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shtatland T, Guettler D, Kossodo M et al (2007) PepBank—a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 8:280

    Article  PubMed  PubMed Central  Google Scholar 

  75. Huang J, Ru B, Zhu P et al (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40((Database issue)):D271–D277

    Article  CAS  PubMed  Google Scholar 

  76. Meydan C, Otu HH, Sezerman OU (2013) Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Genomics 14((Suppl. 2)):S13

    Google Scholar 

  77. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cui J, Han LY, Lin HH et al (2007) Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol 44(5):866–877

    Article  CAS  PubMed  Google Scholar 

  79. Stranzl T, Larsen MV, Lundegaard C et al (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trost B, Bickis M, Kusalik A (2007) Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunol Res 3:5–5

    Google Scholar 

  81. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175

    CAS  PubMed  Google Scholar 

  82. Schuler MM, Nastke MD, Stevanovikc S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93

    Article  CAS  PubMed  Google Scholar 

  83. Bhasin M, Raghava GP (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22(4):229–234

    Article  CAS  PubMed  Google Scholar 

  84. Lundegaard C, Lamberth K, Harndahl M et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36((Web Server issue)):W509–W512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hoof I, Peters B, Sidney J et al (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61(1):1–13

    Article  CAS  PubMed  Google Scholar 

  86. Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424

    Article  PubMed  PubMed Central  Google Scholar 

  87. Donnes P, Kohlbacher O (2005) Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci 14(8):2132–2140

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17(6):555–561

    Article  CAS  PubMed  Google Scholar 

  89. Reche PA, Reinherz EL (2007) Prediction of peptide-MHC binding using profiles. Methods Mol Biol 409:185–200

    Article  CAS  PubMed  Google Scholar 

  90. Guan P, Hattotuwagama CK, Doytchinova IA et al (2006) MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl Bioinformatics 5(1):55–61

    Article  CAS  PubMed  Google Scholar 

  91. Nussbaum AK, Kuttler C, Hadeler KP et al (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53(2):87–94

    Article  CAS  PubMed  Google Scholar 

  92. Bhasin M, Raghava GP (2005) Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 33(Web Server issue):W202–W207.

    Google Scholar 

  93. Nielsen M, Lundegaard C, Lund O et al (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57(1–2):33–41

    Article  CAS  PubMed  Google Scholar 

  94. Bhasin M, Lata S, Raghava GP (2007) TAPPred prediction of TAP-binding peptides in antigens. Methods Mol Biol 409:381–386

    Article  CAS  PubMed  Google Scholar 

  95. Lefranc MP, Giudicelli V, Ginestoux C et al (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37((Database issue)):D1006–D1012

    Article  CAS  PubMed  Google Scholar 

  96. Robinson J, Waller MJ, Fail SC et al (2009) The IMGT/HLA database. Nucleic Acids Res 37((Database issue)):1013–1017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyan Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fu, Z., Lin, J. (2017). An Overview of Bioinformatics Tools and Resources in Allergy. In: Lin, J., Alcocer, M. (eds) Food Allergens. Methods in Molecular Biology, vol 1592. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6925-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6925-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6923-4

  • Online ISBN: 978-1-4939-6925-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics