Skip to main content

Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry

  • Protocol
  • First Online:
Thermogenic Fat

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1566))

Abstract

Global obesity epidemic demands more effective therapeutic treatments and better understanding of obesity pathophysiology. Since obesity results from energy imbalance, accurate quantification of energy intake and energy expenditure (EE) becomes an essential prerequisite to phenotype the cause for obesity development. Indirect calorimetry has long been used as one of the most established methods in EE quantification by detecting changes in levels of O2 consumption and CO2 production. In this article, we describe procedures and important considerations for an effective measurement using indirect calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan KK, Woods SC, Seeley RJ (2012) Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 15(2):137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heitmann BL, Westerterp KR, Loos RJ, Sorensen TI, O'Dea K, McLean P, Jensen TK, Eisenmann J, Speakman JR, Simpson SJ, Reed DR, Westerterp-Plantenga MS (2012) Obesity: lessons from evolution and the environment. Obes Rev 13(10):910–922

    Article  CAS  PubMed  Google Scholar 

  3. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887

    Article  CAS  PubMed  Google Scholar 

  4. Jung RT, Shetty PS, James WP, Barrand MA, Callingham BA (1979) Reduced thermogenesis in obesity. Nature 279(5711):322–323

    Article  CAS  PubMed  Google Scholar 

  5. Frankenfield DC (2010) On heat, respiration, and calorimetry. Nutrition 26(10):939–950

    Article  PubMed  Google Scholar 

  6. Roberts L (1991) A word and the world: the significance of naming the calorimeter. Isis 82:199–222

    Google Scholar 

  7. Levine JA (2005) Measurement of energy expenditure. Public Health Nutr 8(7A):1123–1132

    Article  PubMed  Google Scholar 

  8. Maclagan NF, Sheahan MM (1950) The measurement of oxygen consumption in small animals by a closed circuit method. J Endocrinol 6(4):456–462

    Article  CAS  PubMed  Google Scholar 

  9. Xu Y, Wu Z, Sun H, Zhu Y, Kim ER, Lowell BB, Arenkiel BR, Xu Y, Tong Q (2013) Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab 18(6):860–870

    Article  CAS  PubMed  Google Scholar 

  10. Kong D, Tong Q, Ye C, Koda S, Fuller PM, Krashes MJ, Vong L, Ray RS, Olson DP, Lowell BB (2012) GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151(3):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, Derbenev AV, Zsombok A, Munzberg H (2014) Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab 3(7):681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rothwell NJ, Stock MJ (1982) Energy expenditure of ‘cafeteria’-fed rats determined from measurements of energy balance and indirect calorimetry. J Physiol 328:371–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90–94

    Article  CAS  PubMed  Google Scholar 

  14. Crane JD, Palanivel R, Mottillo EP, Bujak AL, Wang H, Ford RJ, Collins A, Blumer RM, Fullerton MD, Yabut JM, Kim JJ, Ghia JE, Hamza SM, Morrison KM, Schertzer JD, Dyck JR, Khan WI, Steinberg GR (2015) Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med 21(2):166–172

    Article  CAS  PubMed  Google Scholar 

  15. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB (2002) betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843–845

    Article  CAS  PubMed  Google Scholar 

  16. Dewar AD, Newton WH (1948) The relationship between food intake and respiratory quotient in mice. Br J Nutr 2(2):142–145

    Article  CAS  PubMed  Google Scholar 

  17. Guo J, Hall KD (2009) Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput Biol 5(9):e1000511

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64(7):2346–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, Herman MA, Horvath TL, Kahn BB, Kozma SC, Maratos-Flier E, Muller TD, Munzberg H, Pfluger PT, Plum L, Reitman ML, Rahmouni K, Shulman GI, Thomas G, Kahn CR, Ravussin E (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9(1):57–63

    Article  Google Scholar 

  20. Kaiyala KJ, Schwartz MW (2011) Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60(1):17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH R01DK092605. Q.T. is the holder of Cullen Chair in Molecular Medicine and Welch Research Scholar (L-AU0002) of the University of Texas McGovern Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchun Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kim, E.R., Tong, Q. (2017). Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry. In: Wu, J. (eds) Thermogenic Fat. Methods in Molecular Biology, vol 1566. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6820-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6820-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6819-0

  • Online ISBN: 978-1-4939-6820-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics