Skip to main content

Enzyme Histochemistry for Functional Histology in Invertebrates

  • Protocol
  • First Online:
Book cover Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1560))

Abstract

In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lojda Z, Gossrau R, Schiebler TH (1979) Enzyme histochemistry: a laboratory manual. Springer, Berlin

    Book  Google Scholar 

  2. Stoward PJ, Pearse AGE (eds) (1991) Histochemistry: theoretical and applied, 4th ed, vol. 3, enzyme histochemistry. Churchill-Livingstone, Edinburgh

    Google Scholar 

  3. Bancroft JD, Gamble M (2002) Theory and practice of histological techniques. Churchill Livingstone, London

    Google Scholar 

  4. Lentz TL, Barrnett RJ (1961) Enzyme histochemistry of Hydra. J Exp Zool 147:125–149

    Article  CAS  PubMed  Google Scholar 

  5. Menzel LP, Bigger CH (2015) Identification of unstimulated constitutive immunocytes, by enzyme histochemistry, in the coenenchyme of the octocoral Swiftia exserta. Biol Bull 229:199–208

    Article  CAS  PubMed  Google Scholar 

  6. Matskási I, Hajdú É (1983) Studies on the lipase activity of parasitic platyhelminthes. Parasithol Hung 16:53–57

    Google Scholar 

  7. Omar MS, Raoof AM, Alò Amari OM (1996) Onchocerca fasciata: enzyme histochemistry and tissue distribution of various dehydrogenases in the adult female worm. Parasitol Res 82:32–37

    Google Scholar 

  8. Ashrafi SH, Fisk FW (1961) Histochemical localization of phosphatases in the stable fly, Stomoxys calcitrans (L.), using naphthol AS-phoshate. Ohio J Sci 61:7–13

    CAS  Google Scholar 

  9. Weber G (1974) Glycol methacrylate embedding in enzyme histochemistry: application to arthropod tissue incubated for demonstration of unspecific esterase and succinic dehydrogenase activity. Histochemistry 39:155–161

    Article  CAS  PubMed  Google Scholar 

  10. Stokes DR, Vitale AJ, Morgan CR (1979) Enzyme histochemistry of the mesocoxal muscles of Periplaneta americana. Cell Tissue Res 198:175–189

    Article  CAS  PubMed  Google Scholar 

  11. Jansen HH (1981) On the enzyme histochemistry and ultrastructure of the stomach and mid-gut gland in some species of mussels. Zool Anz 202:54–69

    Google Scholar 

  12. Cima F, Matozzo V, Marin MG et al (2000) Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): morphofunctional characterisation. Fish Shellfish Immunol 10:677–693

    Article  CAS  PubMed  Google Scholar 

  13. Sminia T (1972) Structure and function of blood and connective tissue cells of the freshwater pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z Zellforsch Mikrosk Anat 130:497–526

    Article  CAS  PubMed  Google Scholar 

  14. Michel C (1971) Histochemical study of pharyngeal epithelium of Nephthys hombergii (Polychaetes, Annelida). Ann Histochim 16:329–337

    CAS  PubMed  Google Scholar 

  15. Gelder SR (1984) Diet and histophysiology of the alimentary canal of Lumbricillus lineatus (Oligochaeta, Enchytraeidae). Hydrobiologia 115:71–81

    Article  Google Scholar 

  16. Matozzo V, Cima F, Perin L et al (2001) Phagocytic and enzymatic activities of cells and urn cell complexes in the coelomic fluid of the marine worm Sipunculus nudus (Sipuncula). It J Zool 68:273–280

    Article  CAS  Google Scholar 

  17. Van der Plas AJ, Voogt PA (1983) Histochemical observations on the pyloric caeca of Asterias rubens (Echinodermata, Asteroidea) in relation to the reproductive cycle. J Morphol 178:179–186

    Article  Google Scholar 

  18. Ballarin L, Cima F (2005) Cytochemical properties of Botryllus schlosseri haemocytes: indications for morpho-functional characterisation. Eur J Histochem 49:255–264

    CAS  PubMed  Google Scholar 

  19. Cima F, Caicci F, Sordino P (2014) The haemocytes of the salp Thalia democratica (Tunicata, Thaliacea): an ultrastructural and histochemical study in the oozoid. Acta Zool 95:375–391

    Article  Google Scholar 

  20. Martínez A (1995) Nitric oxide synthase in invertebrates. Histochem J 27:770–776

    Article  PubMed  Google Scholar 

  21. Mansueto V, Cangialosi MV, Augustine Arukweb A (2012) Acetylcholinesterase activity in juvenile Ciona intestinalis (Ascidiacea, Urochordata) after exposure to tributyltin. Caryologia 65:18–26

    Article  Google Scholar 

  22. Da Silva SF, Taffarel M, Allodi S (2001) Crustacean visual system: an investigation on glial cells and their relation to extracellular matrix. Biol Cell 93:293–299

    Article  Google Scholar 

  23. Cunningham L (1967) Histochemical observations of the enzymatic hydrolysis of gelatin films. J Histochem Cytochem 51:368–380

    Google Scholar 

  24. Ross LG, Ross B (1999) Anaesthetic and sedative techniques for aquatic animals. Blackwell Science, Oxford

    Google Scholar 

  25. Pennak RW (1953) Fresh-water invertebrates of the United States. The Ronald Press, New York, NY

    Google Scholar 

  26. Berzins IK, Smolowitz RM, Lewbart GA (2012) Diagnostic techniques and sample handling. In: Lewbart GA (ed) Invertebrate medicine, 2nd edn. John Wiley & Sons, Chichester, pp 389–400

    Google Scholar 

  27. Matozzo V, Marin MG (2010) First cytochemical study of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda). Eur J Histochem 54:44–49

    Article  Google Scholar 

  28. Gunkel C, Lewbart GA (2012) Invertebrates. In: West G, Heard D, Caulkett N (eds) Zoo animals and wildlife immobilization and anesthesia. Blackwell Publishing, Oxford, pp 147–158

    Google Scholar 

  29. Gorb SN (1997) Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta: Odonata). Microsc Res Tech 37:583–591

    Article  CAS  PubMed  Google Scholar 

  30. Cima F (2010) Microscopy methods for morpho-functional characterisation of marine invertebrate haemocytes. In: Mendez-Vilas A, Alvarez JD (eds) Microscopy: science, technology, applications and education, microscopy book series, no. 4, vol 2. Formatex Research Center, Badajoz, pp 1100–1107, http://www.formatex.org/microscopy4/index.html

    Google Scholar 

  31. MacMillan HA, Hughson BN (2014) A high-throughput method of hemolymph extraction from adult Drosophila without anesthesia. J Insect Physiol 63:27–31

    Article  CAS  PubMed  Google Scholar 

  32. Malagoli D, Casarini L, Sacchi S et al (2007) Stress and immune response in the mussel Mytilus galloprovincialis. Fish Shellfish Immunol 23:171–177

    Article  CAS  PubMed  Google Scholar 

  33. Barka T, Anderson PJ (1962) Histochemical methods for acid phosphatase using hexazonium pararosaniline as coupler. J Histochem Cytochem 10:741–753

    Article  CAS  Google Scholar 

  34. Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiological pH with special reference to the demonstration of bile canaliculi. Am J Clin Pathol 27:13–23

    Article  CAS  PubMed  Google Scholar 

  35. Nachlas MM, Monis B, Rosenblatt D et al (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 7:261–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurokawa M, Ogata K, Uchiyama F et al (1998) Reappraisal of the expression of mast cell proteases of Mongolian gerbils (Meriones unguiculatus). APMIS 106:727–735

    Article  CAS  PubMed  Google Scholar 

  37. Gomori G (1948) Histochemical demonstration of sites of choline esterase activity. Proc Soc Exp Biol Med 68:354–358

    Article  CAS  PubMed  Google Scholar 

  38. Lison L (1960) Histochimie et cytochimie animales. Principes et methodes. Gauthier-Villars, Paris

    Google Scholar 

  39. Hayashi M, Nakajima Y, Fishman WH (1964) The cytologic demonstration of β-glucuronidase employing naphthol AS-BI glucuronide and hexazonium pararosanilin; a preliminary report. J Histochem Cytochem 12:293–297

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi M (1965) Histochemical demonstration of N-acetyl-β-glucosaminidase employing N-acetyl-β-glucosaminide as substrate. J Histochem Cytochem 13:355–360

    Article  CAS  PubMed  Google Scholar 

  41. Chayen J, Bytensky L, Butcher RG, Poulter LW (1969) A guide to practical histochemistry. Oliver and Boyd, Edinburgh, pp 129–132

    Google Scholar 

  42. Wachstein M, Meisel E (1956) On the histochemical demonstration of glucose-6-phosphatase. J Histochem Cytochem 4:592

    Article  Google Scholar 

  43. Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    Article  CAS  PubMed  Google Scholar 

  44. Shnitka TK, Talibi GG (1971) Cytochemical localization by ferricyanide reduction of a-hydroxy acid oxidase activity in peroxisomes of rat kidney. Histochemie 27:137–158

    Article  CAS  PubMed  Google Scholar 

  45. Hose JE, Martin GG, Nguyen VA, Lucas J, Rosenstein AT (1987) Cytochemical features of shrimp hemocytes. Biol Bull 173:178–187

    Article  Google Scholar 

  46. Novikoff AB, Goldfischer S (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem 17:675–680

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cima, F. (2017). Enzyme Histochemistry for Functional Histology in Invertebrates. In: Pellicciari, C., Biggiogera, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 1560. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6788-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6788-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6787-2

  • Online ISBN: 978-1-4939-6788-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics