Skip to main content

Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes

  • Protocol
  • First Online:
Book cover SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

  • 1479 Accesses

Abstract

Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2):140–146. doi:10.1016/j.ceb.2009.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hunter T (2014) The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol 6(5):a020644. doi:10.1101/cshperspect.a020644

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lim WA, Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142(5):661–667. doi:10.1016/j.cell.2010.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu BA, Engelmann BW, Nash PD (2012) The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 586(17):2597–2605. doi:10.1016/j.febslet.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  5. Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A 105(28):9674–9679. doi:10.1073/pnas.0801314105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suga H, Torruella G, Burger G, Brown MW, Ruiz-Trillo I (2014) Earliest Holozoan expansion of phosphotyrosine signaling. Mol Biol Evol 31(3):517–528. doi:10.1093/molbev/mst241

    Article  CAS  PubMed  Google Scholar 

  7. King N, Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 98(26):15032–15037. doi:10.1073/pnas.261477698, 98/26/15032 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan CS, Bodenmiller B, Pasculescu A, Jovanovic M, Hengartner MO, Jorgensen C, Bader GD, Aebersold R, Pawson T, Linding R (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2(81):ra39. doi:10.1126/scisignal.2000316, 2/81/ra39 [pii]

    Article  PubMed  Google Scholar 

  9. Kawata T, Shevchenko A, Fukuzawa M, Jermyn KA, Totty NF, Zhukovskaya NV, Sterling AE, Mann M, Williams JG (1997) SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium. Cell 89(6):909–916

    Article  CAS  PubMed  Google Scholar 

  10. Pincus D, Letunic I, Bork P, Lim WA (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci U S A 105(28):9680–9684. doi:10.1073/pnas.0803161105, 0803161105 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Science signaling 4(202):ra83. doi:10.1126/scisignal.2002105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22(6):851–868. doi:10.1016/j.molcel.2006.06.001

    Article  PubMed  Google Scholar 

  13. Serfas MS, Tyner AL (2003) Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncol Res 13(6–10):409–419

    Article  PubMed  Google Scholar 

  14. Steele RE, Stover NA, Sakaguchi M (1999) Appearance and disappearance of Syk family protein-tyrosine kinase genes during metazoan evolution. Gene 239(1):91–97, doi:S0378-1119(99)00373-X [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Colicelli J (2010) ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal 3(139):re6. doi:10.1126/scisignal.3139re6, scisignal.3139re6 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  16. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288. doi:10.1093/nar/gkm960, gkm960 [pii]

    CAS  PubMed  Google Scholar 

  17. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34(Database issue):D257–D260. doi:10.1093/nar/gkj079, 34/suppl_1/D257 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Liu BA, Nash PD (2012) Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 367(1602):2556–2573. doi:10.1098/rstb.2012.0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33(Database issue):D476–D480. doi:10.1093/nar/gki107

    Article  PubMed  Google Scholar 

  21. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092, msm092 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Shiu SH, Li WH (2004) Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes. Mol Biol Evol 21(5):828–840. doi:10.1093/molbev/msh077, msh077 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Jin J, Xie X, Chen C, Park JG, Stark C, James DA, Olhovsky M, Linding R, Mao Y, Pawson T (2009) Eukaryotic protein domains as functional units of cellular evolution. Sci Signal 2(98):ra76. doi:10.1126/scisignal.2000546, 2/98/ra76 [pii]

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Piers Nash, Tony Pawson, Chris Tan, and the members of the Nash and Pawson laboratory for helpful discussions. This work was supported by the Canadian Institutes of Health Postdoctoral Fellowship, Bernice Goldblatt Fellowship, Abbott Laboratories Graduate Fellowship, and the Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard A. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, B.A. (2017). Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics