Skip to main content
Book cover

SH2 Domains pp 225–254Cite as

Creation of Phosphotyrosine Superbinders by Directed Evolution of an SH2 Domain

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

Abstract

Commercial antibodies raised against phosphotyrosine have been widely used as reagents to detect or isolate tyrosine-phosphorylated proteins from cellular samples. However, these antibodies are costly and are not amenable to in-house production in an academic lab setting. In this chapter, we describe a method to generate super-high affinity SH2 domains, dubbed the phosphotyrosine superbinders, by evolving a natural SH2 domain using the phage display technology. The superbinders are stable and can be easily produced in Escherichia coli in large quantities. The strategy presented here may also be applied to other protein domains to generate domain variants with markedly enhanced affinities for a specific post-translational modification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33:990–995

    Article  CAS  PubMed  Google Scholar 

  2. Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K et al (2013) Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mayer BJ (2012) Perspective: dynamics of receptor tyrosine kinase signaling complexes. FEBS Lett 586:2575–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hause RJ, Leung KK, Barkinge JL, Ciaccio MF, Chuu C-P, Jones RB (2012) Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS One 7, e44471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ladbury JE, Arold ST (2011) Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Meth Enzymol 488:147–183

    Article  CAS  PubMed  Google Scholar 

  6. Haslam NJ, Shields DC (2012) Peptide-binding domains: are limp handshakes safest? Sci Signal 5:40

    Article  Google Scholar 

  7. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116:191–203

    Article  CAS  PubMed  Google Scholar 

  8. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22:851–868

    Article  PubMed  Google Scholar 

  9. Kaneko T, Joshi R, Feller SM, Li SS-C (2012) Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 10:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M et al (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358:646–653

    Article  CAS  PubMed  Google Scholar 

  11. Eck MJ, Shoelson SE, Harrison SC (1993) Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362:87–91

    Google Scholar 

  12. Tinti M, Nardozza AP, Ferrari E, Sacco F, Corallino S, Castagnoli L, Cesareni G (2012) The 4G10, pY20 and p-TYR-100 antibody specificity: profiling by peptide microarrays. N Biotechnol 29:571–577

    Article  CAS  PubMed  Google Scholar 

  13. Aoki K, Kiyokawa E, Nakamura T, Matsuda M (2008) Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Förster resonance energy transfer. Philos Trans R Soc Lond B Biol Sci 363:2143–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lesuisse D, Lange G, Deprez P, Bénard D, Schoot B, Delettre G, Marquette J-P, Broto P, Jean-Baptiste V, Bichet P et al (2002) SAR and X-ray. A new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J Med Chem 45:2379–2387

    Article  CAS  PubMed  Google Scholar 

  15. Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SSC (2012) Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal 5:68

    Article  Google Scholar 

  16. Bian Y, Li L, Dong M, Liu X, Kaneko T, Cheng K, Liu H, Voss C, Cao X, Wang Y, Litchfield D, Ye M, Li SS, Zou H (2016) Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol 12(11):959–966. doi:10.1038/nchembio.2178

  17. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD et al (2013) Interaction domains of sos1/grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 152:1008–1020

    Article  CAS  PubMed  Google Scholar 

  18. Kärkkäinen S, Hiipakka M, Wang J-H, Kleino I, Vähä-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K (2006) Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep 7:186–191

    Article  PubMed  Google Scholar 

  19. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh J-H, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y et al (2008) A specificity map for the PDZ domain family. PLoS Biol 6, e239

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bloom L, Calabro V (2009) FN3: a new protein scaffold reaches the clinic. Drug Discov Today 14:949–955

    Article  CAS  PubMed  Google Scholar 

  21. Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z et al (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 7:768–784

    Article  CAS  PubMed  Google Scholar 

  23. Machida K, Thompson CM, Dierck K, Jablonowski K, Kärkkäinen S, Liu B, Zhang H, Nash PD, Newman DK, Nollau P et al (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26:899–915

    Article  CAS  PubMed  Google Scholar 

  24. Zhao B, Tan PH, Li SS-C, Pei D (2013) Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. J Proteomics 81:56–69

    Article  CAS  PubMed  Google Scholar 

  25. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174

    Article  CAS  PubMed  Google Scholar 

  26. Leung KK, Hause RJ, Barkinge JL, Ciaccio MF, Chuu C-P, Jones RB (2014) Enhanced prediction of SH2 domain binding potentials using a fluorescence polarization-derived c-Met, c-Kit, ErbB, and androgen receptor interactome. Mol Cell Proteomics 13:1705–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulhern TD, Shaw GL, Morton CJ, Day AJ, Campbell ID (1997) The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Structure 5:1313–1323

    Article  CAS  PubMed  Google Scholar 

  28. Arold ST, Ulmer TS, Mulhern TD, Werner JM, Ladbury JE, Campbell ID, Noble ME (2001) The role of the Src homology 3-Src homology 2 interface in the regulation of Src kinases. J Biol Chem 276:17199–17205

    Article  CAS  PubMed  Google Scholar 

  29. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  CAS  PubMed  Google Scholar 

  30. Kleywegt GJ, Jones TA (1998) Databases in protein crystallography. Acta Crystallogr D Biol Crystallogr 54:1119–1131

    Article  CAS  PubMed  Google Scholar 

  31. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth Enzymol 154:367–382

    Article  CAS  PubMed  Google Scholar 

  32. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Meth Enzymol 328:333–363

    Article  CAS  PubMed  Google Scholar 

  33. Huang H, Sidhu SS (2011) Studying binding specificities of peptide recognition modules by high-throughput phage display selections. Methods Mol Biol 781:87–97

    Article  CAS  PubMed  Google Scholar 

  34. Bradshaw JM, Mitaxov V, Waksman G (1999) Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J Mol Biol 293:971–985

    Article  CAS  PubMed  Google Scholar 

  35. Mayer BJ, Jackson PK, Van Etten RA, Baltimore D (1992) Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol Cell Biol 12:609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaneko T, Sidhu SS, Li SSC (2011) Evolving specificity from variability for protein interaction domains. Trends Biochem Sci 36:183–190

    Article  CAS  PubMed  Google Scholar 

  38. Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SS-C (2010) Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 3:34

    Article  Google Scholar 

  39. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J (1993) Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72:779–790

    Article  CAS  PubMed  Google Scholar 

  40. Ladbury JE, Lemmon MA, Zhou M, Green J, Botfield MC, Schlessinger J (1995) Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc Natl Acad Sci U S A 92:3199–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaushansky A, Allen JE, Gordus A, Stiffler MA, Karp ES, Chang BH, MacBeath G (2010) Quantifying protein-protein interactions in high throughput using protein domain microarrays. Nat Protoc 5:773–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work described here was supported, in part, by grants from the Canadian Cancer Society Research Institute and the Ontario Research Fund. SSCL holds a Canada Research Chair in Functional Genomics and Cellular Proteomics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachdev S. Sidhu or Shawn S. C. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Huang, H., Kaneko, T., Sidhu, S.S., Li, S.S.C. (2017). Creation of Phosphotyrosine Superbinders by Directed Evolution of an SH2 Domain. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics