Skip to main content

Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications

  • Protocol
  • First Online:
Book cover Signal Transduction Immunohistochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1554))

Abstract

Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  CAS  PubMed  Google Scholar 

  2. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  3. Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alonso A, Sasin J, Bottini N et al (2004) Protein phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  5. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21:140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boyle WJ, van der Geer P, Hunter T (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 201:201–240

    Google Scholar 

  7. Ross AH, Baltimore D, Eisen HN (1981) Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 294:654–656

    Article  CAS  PubMed  Google Scholar 

  8. Nairn AC, Detre JA, Casnellie JE et al (1982) Serum antibodies that distinguish between the phospho- and dephospho-forms of a phosphoprotein. Nature 299:734–736

    Article  CAS  PubMed  Google Scholar 

  9. Glenney JR Jr, Zokas L, Kamps MP (1988) Monoclonal antibodies to phosphotyrosine. J Immunol Methods 109:277–285

    Article  CAS  PubMed  Google Scholar 

  10. Kanakura Y, Druker B, Cannistra SA et al (1990) Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76:706–715

    CAS  PubMed  Google Scholar 

  11. Okamoto M, Karasik A, White MF et al (1990) Epidermal growth factor stimulated phosphorylation of a 120-kilodalton endogenous substrate protein in rat hepatocytes. Biochemistry 29:9489–9494

    Article  CAS  PubMed  Google Scholar 

  12. Glenney JR Jr (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264:20163–20166

    CAS  PubMed  Google Scholar 

  13. Kanner SB, Reynolds AB, Vines RR et al (1990) Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci U S A 87:3328–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glenney JR Jr (1992) Tyrosine phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta 1134:113–127

    Article  CAS  PubMed  Google Scholar 

  16. Sefton BM (1982) Phosphorylation and metabolism of the transforming protein of Rous sarcoma virus. J Virol 41:813–820

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shankaran H, Ippolito DL, Chrisler WB et al (2009) Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol 5:1–13

    Article  CAS  Google Scholar 

  18. Lemeer S, Heck AJ (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13:414–420

    Article  CAS  PubMed  Google Scholar 

  19. Kehoe JW, Velappan N, Walbolt M et al (2006) Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 5:2350–2363

    Article  CAS  PubMed  Google Scholar 

  20. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  21. Weng Q-P, Kozlowski M, Belham C et al (1995) Regulation of the p70 S6 kinase by phosphorylation in vivo. J Biol Chem 273:16621–16629

    Article  Google Scholar 

  22. Yung Y, Dolginov Y, Zao Z et al (1997) Detection of ERK activation by a novel monoclonal antibody. FEBS Lett 408:292–296

    Article  CAS  PubMed  Google Scholar 

  23. Campos-Gonzalez R, Glenney JR Jr (1991) Immunodetection of the ligand-activated receptor for epidermal growth factor. Growth Factors 4:305–316

    Article  CAS  PubMed  Google Scholar 

  24. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80:6126–6130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heffetz D, Fridkin M, Zick Y (1991) Generation and use of antibodies to phosphothreonine. Methods Enzymol 201:44–52

    Article  CAS  PubMed  Google Scholar 

  26. Wang JY (1991) Generation and use of anti-phosphotyrosine antibodies raised against bacterially expressed abl protein. Methods Enzymol 201:53–65

    Article  CAS  PubMed  Google Scholar 

  27. Briand JP, Muller S, Van Regenmortel MHV (1985) Synthetic peptides as antigens: pitfalls of conjugation methods. J Immunol Methods 78:59–69

    Article  CAS  PubMed  Google Scholar 

  28. Epstein RJ, Druker BJ, Roberts TM et al (1992) Synthetic phosphopeptide immunogens yield activation-specific antibodies to the c-erbB-2 receptor. Proc Natl Acad Sci U S A 89:10435–10439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edbauer D, Cheng D, Batterton MN et al (2009) Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 8:681–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi Y, Dodson GE, Mukhopadhyay PS et al (2007) Identification of carboxyl-terminal MCM3 phosphorylation sites using polyreactive phosphospecific antibodies. J Biol Chem 282:9236–9243

    Article  CAS  PubMed  Google Scholar 

  31. Tam JP, Zavala F (1989) Multiple antigen peptide: a novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods 124:53–61

    Article  CAS  PubMed  Google Scholar 

  32. Spieker-Polet H, Sethupathi P, Yam PC et al (1995) Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci U S A 92:9348–9352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruff-Jamison S, Campos-Gonzalez R, Glenney JR Jr (1991) Heavy and light variable region sequences and antibody properties of anti-phosphotyrosine antibodies reveal both common and distinct features. J Biol Chem 266:6607–6613

    CAS  PubMed  Google Scholar 

  34. Ruff-Jamison S, Glenney JR Jr (1993) Requirements for both H and L chain V regions, VH and VK joining amino acids, and the unique H chain D region for the high affinity binding of an anti-phosphotyrosine antibody. J Immunol 150:3389–3396

    CAS  PubMed  Google Scholar 

  35. Ruff-Jamison S, Glenner JR Jr (1993) Molecular modeling and site-directed mutagenesis of an anti-phosphotyrosine antibody predicts the combining site and allows the detection of higher affinity interactions. Protein Eng 6:661–668

    Article  CAS  PubMed  Google Scholar 

  36. Tuckey CD, Noren CJ (2002) Selection for mutants improving expression of an anti-MAP kinase monoclonal antibody by filamentous phage display. J Immunol Methods 270:247–257

    Article  CAS  PubMed  Google Scholar 

  37. Campos-Gonzalez R, Glenney JR Jr (1991) Temperature-dependent tyrosine phosphorylation of microtubule-associated protein kinase in epidermal growth factor-stimulated human fibroblasts. Cell Regul 2:663–673

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaughan MH, Xia X, Wang X et al (2007) Generation and characterization of a novel phospho-specific monoclonal antibody to p120-catenin serine 879. Hybridoma 26:407–415

    Article  CAS  PubMed  Google Scholar 

  39. Borrebaeck CAK, Malmborg AC, Furebring C et al (1992) Kinetic analysis of recombinant antibody-antigen interactions: relation between structural domains and antigen binding. Nat Biotechnol 10:697–698

    Article  CAS  Google Scholar 

  40. Michalewski MP, Kaczmarski W, Golabek A et al (2002) Immunoblotting with anti-phosphoamino acid antibodies: importance of the blocking solution. Anal Biochem 276:254–257

    Article  CAS  Google Scholar 

  41. Song KS, Tang Z, Lisanti MP (1997) Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J Biol Chem 271:4398–4403

    Article  Google Scholar 

  42. Heinrich MC, Griffith DJ, Druker BJ et al (2000) Inhibition of c-kit receptor tyrosine kinase kinase activity by STI571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    CAS  PubMed  Google Scholar 

  43. Nelson EA, Walker SR, Kepich A et al (2008) Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 112:5095–5102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hardie DG, Haystead TAJ, Sim ATR (2001) Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol 201:531–538

    Google Scholar 

  45. Gordon JA (2001) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:581–586

    Google Scholar 

  46. Evans GA, Garcia GG, Erwin R et al (1994) Pervanadate stimulates the effects of interleukin-2 (IL-2) in human T cells and provides evidence for the activation of two distinct tyrosine kinase pathways by IL-2. J Biol Chem 269:23407–23412

    CAS  PubMed  Google Scholar 

  47. Ruff SJ, Chen K, Cohen S (1997) Peroxovanadate induces tyrosine phosphorylation of multiple signaling proteins in mouse liver and kidney. J Biol Chem 272:1263–1267

    Article  CAS  PubMed  Google Scholar 

  48. Yang TT, Yu RY, Agadir A et al (2008) Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localization of NFATc4. Mol Cell Biol 28:3489–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilbert C, Rollet-Labelle E, Con AC, Naccache PH (2002) Immunoblotting and sequential lysis protocols for the analysis of tyrosine phosphorylation-dependent signaling. J Immnol Methods 271:185–201

    Article  CAS  Google Scholar 

  51. Skolnik EY, Lee CH, Batzer A et al (1993) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Sch: implications for insulin control of ras signaling. EMBO J 12:1929–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barbareschi M, Girlando S, Mauri FM et al (1994) Quantitative growth fraction evaluation with MIB1 and Ki67 antibodies in breast carcinomas. Am J Clin Pathol 102:171–175

    Article  CAS  PubMed  Google Scholar 

  53. Mandell JW (2003) Phosphorylation state-specific antibodies. Applications in investigative and diagnostic pathology. Am J Pathol 163:1687–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bordeaux J, Welsh AW, Agarwal S et al (2010) Antibody validation. Biotechniques 48:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mandell JW (2008) Immunohistochemical assessment of protein phosphorylation state: the dream and the reality. Histochem Cell Biol 130:465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalyuzhny AE (2009) The dark side of the immunohistochemical moon: industry. J Histochem Cytochem 57:1099–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krutzik PO, Irish JM, Nolan GP et al (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221

    Article  CAS  PubMed  Google Scholar 

  58. Perez OD, Mitchell D, Campos R et al (2005) Multiparameter analysis of intracellular phosphoepitopes in immunophenotyped cell populations by flow cytometry. Curr Protoc Cytom 6:1–22

    Google Scholar 

  59. Chow S, Patel H, Hedley DW (2001) Measurement of MAP kinase activation by flow cytometry using phospho-specific antibodies to MEK and ERK: potential for pharmacodynamic monitoring of signal transduction inhibitors. Cytometry 46:72–78

    Article  CAS  PubMed  Google Scholar 

  60. Lombardi Givan A (2001) Flow cytometry. First principles, 2nd edn. Wiley-Liss Press, New York

    Book  Google Scholar 

  61. Smith CL, Debouk C, Rosenberg M et al (1988) Phosphorylation of ferine residue 89 of human adenovirus E1A proteins is responsible for their characteristic electrophoretic mobility shits, and its mutation affects biological function. J Virol 63:1569–1577

    Google Scholar 

  62. Wegener AD, Jones LR (1984) Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. J Biol Chem 259:1834–1841

    CAS  PubMed  Google Scholar 

  63. Jorgensen CS, Jagd M, Sorensen BK et al (2004) Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes. Anal Biochem 330:87–97

    Article  CAS  PubMed  Google Scholar 

  64. Forrer P, Tamaskovic R, Jaussi R (1998) Enzyme-linked immunosorbent assay for measurement of JNK, ERK and p38 kinase activities. Biol Chem 379:1101–1111

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki S, Tamai K, Yoshida S (2002) Enzyme-linked immunosorbent assay for distinct cyclin-dependent kinase activities using phosphorylation-site-specific anti pRB monoclonal antibodies. Anal Biochem 301:65–74

    Article  CAS  PubMed  Google Scholar 

  66. Offterdinger M, Bastiaens PI (2008) Prolonged EGFR signaling by ERBB2-mediated sequestration at the plasma membrane. Traffic 9:147–155

    Article  CAS  PubMed  Google Scholar 

  67. Loos T, Mortier A, Gouwy M et al (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112:2648–2656

    Article  CAS  PubMed  Google Scholar 

  68. Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez E, McGraw TE (2009) The AKT kinases: isoform specificity in metabolism and cancer. Cell Cycle 8:2502–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ribeiro-Oliveira A Jr, Franchi G, Kola B et al (2008) Protein western array analysis in human pituitary tumors: insights and limitations. Endocr Relat Cancer 15:1099–1114

    Article  CAS  PubMed  Google Scholar 

  71. Pelech S, Sutter C, Zhang H (2003) Kinetworks protein kinase multiblot analysis. Methods Mol Biol 218:99–111

    CAS  PubMed  Google Scholar 

  72. Ciaccio MF, Wagner JP, Chuu C-P et al (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods 7:148–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  CAS  PubMed  Google Scholar 

  74. Mayya V, Lundgren DH, Hwang S-I et al (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2:ra46, 1–16

    Article  PubMed  Google Scholar 

  75. Fan A, Deb-Basu D, Orban MW et al (2009) Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical samples. Nat Med 15:566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hughes TR, Shoemaker DD (2001) DNA microarrays for expression profiling. Curr Opin Chem Biol 5:21–25

    Article  CAS  PubMed  Google Scholar 

  77. Andersson O, Kozlowski M, Garachtchenko T et al (2005) Determination of relative protein abundance by internally normalized ratio algorithm with antibody arrays. J Proteome Res 4:758–767

    Article  CAS  PubMed  Google Scholar 

  78. Pelech S, Jelinkova L, Susor A et al (2008) Antibody microarray analyses of signal transduction protein expression and phosphorylation during porcine oocyte maturation. J Proteome Res 7:2860–2871

    Article  CAS  PubMed  Google Scholar 

  79. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532

    Article  CAS  PubMed  Google Scholar 

  80. Russo G, Zegar C, Giordano A (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22:6497–6507

    Article  CAS  PubMed  Google Scholar 

  81. Nielsen UB, Cardone MH, Sinskey AJ et al (2003) Profiling receptor kinase activation by using ab microarrays. Proc Natl Acad Sci U S A 100:9330–9335

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu X, Kim P, Kirkland R et al (2009) Prevalence of activated & total p95HER2 and other receptor tyrosine kinases in breast cancer. AACR San Antonio Breast Cancer Symposium Abstract # 3053

    Google Scholar 

  83. Paweletz CP, Charboneau L, Bichsel VE et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  CAS  PubMed  Google Scholar 

  84. Espina V, Woodhouse EC, Wulfkuhle J et al (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290:121–133

    Article  CAS  PubMed  Google Scholar 

  85. Spurrier B, Ramalingam S, Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3:1796–1808

    Article  PubMed  Google Scholar 

  86. Chan SM, Ermann J, Su L et al (2004) Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med 10:1390–1396

    Article  CAS  PubMed  Google Scholar 

  87. Natarajan Mendes K, Nicorici D, Cogdell D et al (2007) Analysis of signaling pathways in 90 cancer cell lines by protein lysate array. J Proteome Res 6:2753–2767

    Article  CAS  Google Scholar 

  88. Schweitzer B, Roberts S, Grimwade B et al (2002) Multiplex protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol 20:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dahut WL, Scripture C, Posadas E et al (2008) A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 14:209–214

    Article  CAS  PubMed  Google Scholar 

  90. Tan CSH, Bodenmiller B, Pascualescu A et al (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2:ra39, 1–13

    Article  PubMed  Google Scholar 

  91. Drucker BJ (2009) Perspectives on the development of imatinib and the future of cancer research. Nat Med 10:1149–1152

    Article  CAS  Google Scholar 

  92. Jilani I, Kanttarjian H, Gorre M et al (2008) Phosphorylation levels of BCR-ABL, CrkL, AKT, and STAT5 in imatinib-resistant chronic myeloid leukemia cells implicate alternative pathway usage as a survival strategy. Leuk Res 32:643–649

    Article  CAS  PubMed  Google Scholar 

  93. Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signaling networks: towards single-cell proteomics. Nat Rev Cancer 6:146–155

    Article  CAS  PubMed  Google Scholar 

  94. Juan G, Gruenwald S, Darzynkiewicz (1998) Phosphorylation of retinoblastoma susceptibility gene protein assayed in individual lymphocytes during their mitogenic stimulation. Exp Cell Res 239:104–110

    Article  CAS  PubMed  Google Scholar 

  95. Juan G, Traganos F, Darzynkiewicz Z (1999) Histone H3 phosphorylation in human monocytes and during HL-60 cell differentiation. Exp Cell Res 246:212–220

    Article  CAS  PubMed  Google Scholar 

  96. Zell T, Khoruts A, Ingulli E et al (2001) Single-cell analysis of signal transduction in CD4 T cells stimulated by antigen in vivo. Proc Natl Acad Sci U S A 98:10805–10810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Krutzik PO, Hale MB, Nolan GP (2005) Characterization of the murine immunological signaling network with phosphospecific flow cytometry. J Immunol 175:2366–2373

    Article  CAS  PubMed  Google Scholar 

  98. Lu XP, Alpdogan O, Lin J et al (2008) STAT-3 and ERK1/2 phosphorylation are critical for T-cell activation and graft-versus-host disease. Blood 112:5254–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Perez OD, Nolan GP (2002) Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 20:155–162

    Article  CAS  PubMed  Google Scholar 

  100. Shachaf CM, Elchuri SV, Koh AL et al (2009) A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles. PLoS One 4:e5206, 1–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Irish JM, Hovland R, Krutzik PO et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228

    Article  CAS  PubMed  Google Scholar 

  102. Hale MB, Krutzik PO, Samra SS et al (2009) Stage dependent aberrant regulation of cytokine-STAT signaling in murine systemic lupus erythematosus. PLoS One 4:e6756, 1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368

    Article  CAS  PubMed  Google Scholar 

  104. Pritchard JR, Cosgrove BD, Hemann MT et al (2009) Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death. Mol Cancer Ther 8:2183–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morgan E, Varro R, Sepulveda H et al (2004) Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 110:252–266

    Article  CAS  PubMed  Google Scholar 

  106. Chen L, Huynh L, Apgar J et al (2008) ZA-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 111:2685–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Massarelli E, Liu DD, Lee JJ et al (2005) Akt activation correlates with adverse outcome in tongue cancer. Cancer 104:2430–2436

    Article  CAS  PubMed  Google Scholar 

  108. Smitz KJ, Otterbach F, Callies R et al (2004) Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol 17:15–21

    Article  CAS  Google Scholar 

  109. Okamoto I, Kenyon LC, Emlet DR et al (2003) Expression of activated EGFRvIII in small cell lung cancer. Cancer Sci 94:50–56

    Article  CAS  PubMed  Google Scholar 

  110. D’Andrea MR, Mel JM, Tuman RW et al (2005) Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis. Mol Cancer Ther 4:1198–1204

    Article  PubMed  CAS  Google Scholar 

  111. Kong A, Leboucher P, Leek R et al (2006) Prognostic value of an activation state marker for epidermal growth factor receptor in tissue microarrays of head and neck cancer. Cancer Res 66:2834–2843

    Article  CAS  PubMed  Google Scholar 

  112. VanMeter AJ, Rodriguez AS, Bowman ED et al (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer. Mol Cell Proteomics 7:1902–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nagai Y, Miyasaki M, Akoi R et al (2000) A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol 18:313–316

    Article  CAS  PubMed  Google Scholar 

  114. Ng T, Squire A, Hansra G et al (1999) Imaging protein kinase C alpha activation in cells. Science 283:2085–2089

    Article  CAS  PubMed  Google Scholar 

  115. Tomida T, Takekawa M, O’Grady P et al (2009) Stimulus-specific distinctions in spatial and temporal dynamics of stress-activated protein kinase kinase kinases revealed by a fluorescence resonance energy transfer biosensor. Mol Cell Biol 29:6117–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ting AY, Kain KH, Klemke RL et al (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 98:15003–15008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kelleher MT, Fruhwirth G, Patel G et al (2009) The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients. Target Oncol 4:235–252

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Brumbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brumbaugh, K., Liao, WC., Houchins, J.P., Cooper, J., Stoesz, S. (2017). Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. In: Kalyuzhny, A. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 1554. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6759-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6759-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6757-5

  • Online ISBN: 978-1-4939-6759-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics