Skip to main content

Assays for Identifying Inducers of the Antimicrobial Peptide LL-37

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

One promising approach to meet the growing problem of antibiotic resistance is to modulate host defense mechanisms, i.e., host-directed therapy (HDT), in the fight against infections. Induction of endogenous antimicrobial peptides (AMPs) via small molecular compounds, such as 1,25-dihydroxyvitamin D3 or phenylbutyrate, could provide one such HDT-based approach.

We have developed a cell-based screening assay for the identification of novel compounds with the capacity to induce AMP expression and here follows the detailed protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cederlund A, Gudmundsson GH, Agerberth B (2011) Antimicrobial peptides important in innate immunity. FEBS J 278:3942–3951

    Article  CAS  PubMed  Google Scholar 

  2. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  3. Kai-Larsen Y, Agerberth B (2008) The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13:3760–3767

    Article  CAS  PubMed  Google Scholar 

  4. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  5. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  6. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    CAS  PubMed  Google Scholar 

  7. Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58:978–989

    Article  CAS  PubMed  Google Scholar 

  8. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Olafsdottir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 16:239–251

    Article  CAS  PubMed  Google Scholar 

  9. Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53:5127–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173:2909–2912

    Article  CAS  PubMed  Google Scholar 

  11. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19:1067–1077

    Article  CAS  PubMed  Google Scholar 

  12. Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 124(5):1080–1082

    Article  CAS  PubMed  Google Scholar 

  13. Nylen F, Miraglia E, Cederlund A, Ottosson H, Stromberg R, Gudmundsson GH, Agerberth B (2014) Boosting innate immunity: development and validation of a cell-based screening assay to identify LL-37 inducers. Innate Immun 20:364–376

    Article  PubMed  Google Scholar 

  14. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  PubMed  Google Scholar 

  15. Hancock RE, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254

    Article  CAS  PubMed  Google Scholar 

  16. Gorman CM, Howard BH, Reeves R (1983) Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res 11:7631–7648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schauber J, Svanholm C, Termen S, Iffland K, Menzel T, Scheppach W, Melcher R, Agerberth B, Luhrs H, Gudmundsson GH (2003) Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    Article  CAS  PubMed  Google Scholar 

  19. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to Hanna Axelsson, at CBCS and Karolinska Institutet, for discussions and advice regarding assay formatting and data analysis.

“The authors are supported by the Swedish Research Council (56X-1217-01-6 (BA), 20854 (BA) and 2013-2709 (PB), a Linneus grant CERIC, BA), The Swedish Strategic Foundation: RBd08-0014 (BA), Karolinska Institutet (BA, PB), the Icelandic Centre for Research (RANNIS, GHG), and the University of Iceland Research Fund (GHG). Groschinsky's Foundation (PB), Scandinavian Society for Antimicrobial Therapy Foundation (PB), Swedish Society of Physicians (PB), and Heart and Lung Foundation (BA, PB).

Gudmundur H. Gudmundsson is a visiting scientist at Karolinska Institutet supported by the Wenner-Gren foundation. The Prestwick Chemical Library and plating thereof was provided by the Chemical Biology Consortium Sweden (CBCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nylén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nylén, F., Bergman, P., Gudmundsson, G.H., Agerberth, B. (2017). Assays for Identifying Inducers of the Antimicrobial Peptide LL-37. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics