Skip to main content

Antimicrobial Peptides: An Introduction

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

The “golden era” of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steiner H, Hultmark D, Engström Å et al (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  CAS  PubMed  Google Scholar 

  2. Zasloff M (1987) Magainins, A class of antimicrobial peptides from xenopus skin - isolation, characterization of 2 active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 84:5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  4. Mookherjee N, Hancock REW (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64:922–933

    Article  CAS  PubMed  Google Scholar 

  5. Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci 97:8856–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai JR, Huck BR, Weisblum B, Gellman SH (2002) Design of non-cysteine-containing antimicrobial β-hairpins: structure–activity relationship studies with linear protegrin-1 analogues. Biochemistry 41:12835–12842

    Article  CAS  PubMed  Google Scholar 

  7. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    Article  CAS  PubMed  Google Scholar 

  9. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phoenix DA, Dennison SR, Harris F (2013) Anionic antimicrobial peptides. In: Antimicrobial peptides. Wiley-VCH, GmbH & Co. KGaA, pp 83–113

    Chapter  Google Scholar 

  11. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  13. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2015) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097

    Article  PubMed  PubMed Central  Google Scholar 

  14. Piotto SP, Sessa L, Concilio S, Iannelli P (2012) YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 39:346–351

    Article  CAS  PubMed  Google Scholar 

  15. Hammami R, Hamida JB, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Li X, Wang Z (2015) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    Article  PubMed  PubMed Central  Google Scholar 

  18. Skalickova S, Heger Z, Krejcova L et al (2015) Perspective of use of antiviral peptides against influenza virus. Viruses 7:5428–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  20. de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E et al (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta 1858:1061–1069

    Article  PubMed  CAS  Google Scholar 

  21. Mansour SC, Pena OM, Hancock REW (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35:443–450

    Article  CAS  PubMed  Google Scholar 

  22. Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768

    Article  CAS  PubMed  Google Scholar 

  23. Mor A, Nguyen VH, Delfour A et al (1991) Isolation, amino acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry (Mosc) 30:8824–8830

    Article  CAS  Google Scholar 

  24. Durr UHN, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425

    Article  PubMed  CAS  Google Scholar 

  25. Sørensen OE, Follin P, Johnsen AH et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    Article  PubMed  Google Scholar 

  26. Sørensen OE, Gram L, Johnsen AH et al (2003) Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 278:28540–28546

    Article  PubMed  CAS  Google Scholar 

  27. Murakami M, Lopez-Garcia B, Braff M et al (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    Article  CAS  PubMed  Google Scholar 

  28. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knappe D, Piantavigna S, Hansen A et al (2010) Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. J Med Chem 53:5240–5247

    Article  CAS  PubMed  Google Scholar 

  30. de la Fuente-Núñez C, Reffuveille F, Mansour SC et al (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22:196–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jahnsen RD, Frimodt-Moller N, Franzyk H (2012) Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli: a comparative study of different backbones. J Med Chem 55:7253–7261

    Article  CAS  PubMed  Google Scholar 

  32. Hilchie AL, Haney EF, Pinto DM et al (2015) Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03. Exp Mol Pathol 99:426–434

    Article  CAS  PubMed  Google Scholar 

  33. Bommarius B, Jenssen H, Elliott M et al (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arias M, Hoffarth ER, Ishida H et al (2016) Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Biochim Biophys Acta 1858:1012

    Article  CAS  PubMed  Google Scholar 

  35. Panteleev PV, Ovchinnikova TV (2015) Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol Appl Biochem. doi: 10.1002/bab.1456

  36. Li Y, Wang J, Yang J et al (2014) Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr Purif 95:182–187

    Article  CAS  PubMed  Google Scholar 

  37. Mulder KC, de Lima LA, Aguiar PS et al (2015) Production of a modified peptide clavanin in Pichia pastoris: cloning, expression, purification and in vitro activities. AMB Express 5:46

    Article  PubMed Central  Google Scholar 

  38. Bellamy W, Takase M, Yamauchi K et al (1992) Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121:130–136

    Article  CAS  PubMed  Google Scholar 

  39. Théolier J, Hammami R, Labelle P et al (2013) Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. J Funct Foods 5:706–714

    Article  CAS  Google Scholar 

  40. van der Kraan MIA, Nazmi K, Teeken A et al (2005) Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol Chem 386:137–142

    PubMed  Google Scholar 

  41. Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185:4938–4947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ibrahim HR, Thomas U, Pellegrini A (2001) A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774

    Article  CAS  PubMed  Google Scholar 

  43. Haney EF, Nguyen LT, Schibli DJ, Vogel HJ (2012) Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41. Beilstein J Org Chem 8:1172–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haney EF, Hancock REW (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    CAS  Google Scholar 

  46. Xu L, Chou S, Wang J et al (2015) Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides. Amino Acids 47:2385–2397

    Article  CAS  PubMed  Google Scholar 

  47. Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9:e91007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hilpert K, Winkler DF, Hancock REW (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2:1333–1349

    Article  CAS  PubMed  Google Scholar 

  49. Winkler DF, Hilpert K, Brandt O, Hancock REW (2009) Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method. Methods Mol Biol 570:157–174

    Article  CAS  PubMed  Google Scholar 

  50. Hilpert K, Volkmer-Engert R, Walter T, Hancock REW (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23:1008–1012

    Article  CAS  PubMed  Google Scholar 

  51. Cherkasov A, Hilpert K, Jenssen H et al (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol 4:65–74

    Article  CAS  PubMed  Google Scholar 

  52. Powers JPS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691

    Article  CAS  PubMed  Google Scholar 

  53. Taylor K, Barran PE, Dorin JR (2008) Structure–activity relationships in β-defensin peptides. J Pept Sci 90:1–7

    Article  CAS  Google Scholar 

  54. Avitabile C, D’Andrea LD, Romanelli A (2014) Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep 4:4293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bürck J, Wadhwani P, Fanghänel S, Ulrich AS (2016) Oriented circular dichroism: a method to characterize membrane-active peptides in oriented lipid bilayers. Acc Chem Res 49:184–192

    Article  PubMed  CAS  Google Scholar 

  56. Haney EF, Vogel HJ (2009) NMR of antimicrobial peptides. Ann Rep NMR Spectrosc 65:1–51

    Article  CAS  Google Scholar 

  57. Bhunia A, Domadia PN, Torres J et al (2010) NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 285:3883–3895

    Article  CAS  PubMed  Google Scholar 

  58. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  CAS  PubMed  Google Scholar 

  59. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  60. Yang L, Harroun TA, Weiss TM et al (2001) Barrel-Stave model or Toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  61. Laver DR (1994) The barrel-stave model as applied to alamethicin and its analogs reevaluated. Biophys J 66:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161

    Article  CAS  PubMed  Google Scholar 

  63. Sengupta D, Leontiadou H, Mark AE, Marrink S-J (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317

    Article  CAS  PubMed  Google Scholar 

  64. Wu M, Maier E, Benz R, Hancock REW (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  CAS  PubMed  Google Scholar 

  65. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry (Mosc) 36:1826–1835

    Article  CAS  Google Scholar 

  66. Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides. A review. Antimicrob Resist Chemother 4:294

    Google Scholar 

  67. Gazit E, Miller IR, Biggin PC et al (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870

    Article  CAS  PubMed  Google Scholar 

  68. Hong RW, Shchepetov M, Weiser JN, Axelsen PH (2003) Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob Agents Chemother 47:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park CB, Yi KS, Matsuzaki K et al (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci 97:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang X, Wang Y, Liu L et al (2016) Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum. Biochim Biophys Acta 1858:274–280

    Article  CAS  PubMed  Google Scholar 

  71. Mularski A, Wilksch JJ, Wang H et al (2015) Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir ACS J Surf Colloids 31:6164–6171

    Article  CAS  Google Scholar 

  72. Martin NI, Breukink E (2007) Expanding role of lipid II as a target for lantibiotics. Future Microbiol 2:513–525

    Article  CAS  PubMed  Google Scholar 

  73. Bierbaum G, Sahl HG (1985) Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141:249–254

    Article  CAS  PubMed  Google Scholar 

  74. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860

    Article  CAS  PubMed  Google Scholar 

  75. Guilhelmelli F, Vilela N, Albuquerque P et al (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353

    Article  PubMed  PubMed Central  Google Scholar 

  76. Patrzykat A, Friedrich CL, Zhang L et al (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  78. Haney EF, Petersen AP, Lau CK et al (2013) Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochim Biophys Acta 1828:1802–1813

    Article  CAS  PubMed  Google Scholar 

  79. Friedrich CL, Moyles D, Beveridge TJ, Hancock REW (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  81. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  Google Scholar 

  82. Vojtek L, Dobes P, Büyükgüzel E et al (2014) Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Eur J Entomol 111:335–340

    Article  Google Scholar 

  83. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  84. Bowdish DM, Davidson DJ, Lau YE et al (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77:451–459

    Article  CAS  PubMed  Google Scholar 

  85. Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2:a000398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589

    Article  PubMed  CAS  Google Scholar 

  87. Overhage J, Campisano A, Bains M et al (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haney EF, Mansour SC, Hilchie AL et al (2015) High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 71:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de la Fuente-Núñez C, Reffuveille F, Haney EF et al (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wang G, Hanke ML, Mishra B et al (2014) Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol 9:1997–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock REW (2014) A broad-spectrum anti-biofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58:5363–5371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ceri H, Olson ME, Stremick C et al (1999) The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Olivares E, Badel-Berchoux S, Provot C et al (2016) The Biofilm Ring Test®: a rapid method for the routine analysis of P. aeruginosa biofilm formation kinetics. J Clin Microbiol 54:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol 22:1B11–1B118

    Google Scholar 

  96. Scott MG, Dullaghan E, Mookherjee N et al (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25:465–472

    Article  CAS  PubMed  Google Scholar 

  97. Yang D, Chertov O, Oppenheim JJ (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J Leukoc Biol 69:691–697

    CAS  PubMed  Google Scholar 

  98. Tjabringa GS, Ninaber DK, Drijfhout JW et al (2006) Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 140:103–111

    Article  CAS  PubMed  Google Scholar 

  99. Scott MG, Vreugdenhil ACE, Buurman WA et al (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164:549–553

    Article  CAS  PubMed  Google Scholar 

  100. Steinstraesser L, Hirsch T, Schulte M et al (2012) Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7:e39373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heilborn JD, Nilsson MF, Kratz G et al (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120:379–389

    Article  CAS  PubMed  Google Scholar 

  102. van der Does AM, Joosten SA, Vroomans E et al (2012) The antimicrobial peptide hLF1-11 drives monocyte-dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17 polarization. J Innate Immun 4:284–292

    Article  PubMed  CAS  Google Scholar 

  103. Davidson DJ, Currie AJ, Reid GS et al (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156

    Article  CAS  PubMed  Google Scholar 

  104. Mansour SC, de la Fuente-Núñez C, Hancock REW (2015) Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci 21:323–329

    Article  CAS  PubMed  Google Scholar 

  105. Chen H-C (2005) Boyden chamber assay. Methods Mol Biol 294:15–22

    PubMed  Google Scholar 

  106. Bowdish DME, Davidson DJ, Scott MG, Hancock REW (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49:1727–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hancock REW (2016) Bioinformatics: novel insights from genomic information. Nestlé Nutr Inst Workshop Ser 84:35–46

    PubMed  Google Scholar 

  108. Kozłowska K, Nowak J, Kwiatkowski B, Cichorek M (1999) ESR study of plasmatic membrane of the transplantable melanoma cells in relation to their biological properties. Exp Toxicol Pathol 51:89–92

    Article  PubMed  Google Scholar 

  109. Eisenberg D, Terwilliger TC, Tsui F (1980) Structural studies of bee melittin. Biophys J 32:252–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lichtenstein A, Ganz T, Selsted ME, Lehrer RI (1986) In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 68:1407–1410

    CAS  PubMed  Google Scholar 

  111. Riss TL, Moravec RA, Niles AL et al (2004) Cell viability assays. Assay Guidance Manual. Available from http://www.ncbi.nlm.nih.gov/books/NBK144065/

  112. Smith SM, Wunder MB, Norris DA, Shellman YG (2011) A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PLoS One 6:e26908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mai JC, Mi Z, Kim S-H et al (2001) A proapoptotic peptide for the treatment of solid tumors. Cancer Res 61:7709–7712

    CAS  PubMed  Google Scholar 

  114. Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643

    Article  CAS  PubMed  Google Scholar 

  115. Hwang PM, Zhou N, Shan X et al (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298

    Article  CAS  PubMed  Google Scholar 

  116. Rozek A, Friedrich CL, Hancock REW (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39:15765–15774

    Article  CAS  PubMed  Google Scholar 

  117. Sawai MV, Jia HP, Liu LD et al (2001) The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment. Biochemistry 40:3810–3816

    Article  CAS  PubMed  Google Scholar 

  118. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  119. Gesell J, Zasloff M, Opella SJ (1997) Two-dimensional H-1 NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9:127–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all the members of the Hancock Lab (both past and present) for their valuable input and discussions regarding antimicrobial, antibiofilm, and immunomodulatory peptides . This work was supported by the Canadian Institutes of Health Research [funding reference number MOP-74493]. REWH holds a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. W. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Haney, E.F., Mansour, S.C., Hancock, R.E.W. (2017). Antimicrobial Peptides: An Introduction. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics