Skip to main content

Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

Abstract

The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  2. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165

    Article  CAS  PubMed  Google Scholar 

  4. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26:5–11

    Article  PubMed  Google Scholar 

  5. Proal AD, Albert PJ, Marshall TG (2013) The human microbiome and autoimmunity. Curr Opin Rheumatol 25:234–240

    Article  CAS  PubMed  Google Scholar 

  6. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu B, Faller LL, Klitgord N et al (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS ONE 7:e37919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peterson SN, Snesrud E, Liu J et al (2013) The dental plaque microbiome in health and disease. PLoS ONE 8:e58487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69:137–143

    Article  CAS  PubMed  Google Scholar 

  10. Haubek D, Ennibi O-K, Poulsen K et al (2008) Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet 371:237–242

    Article  CAS  PubMed  Google Scholar 

  11. Kazakova SV, Hageman JC, Matava M et al (2005) A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med 352:468–475

    Article  CAS  PubMed  Google Scholar 

  12. Karch H, Tarr PI, Bielaszewska M (2005) Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295:405–418

    Article  CAS  PubMed  Google Scholar 

  13. Sabat AJ, Budimir A, Nashev D et al (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:20380

    CAS  PubMed  Google Scholar 

  14. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scholz CFP, Poulsen K, Kilian M (2012) Novel molecular method for identification of Streptococcus pneumoniae applicable to clinical microbiology and 16S rRNA sequence-based microbiome studies. J Clin Microbiol 50:1968–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maiden MCJ (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  17. Maiden MCJ, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bishop CJ, Aanensen DM, Jordan GE et al (2009) Assigning strains to bacterial species via the internet. BMC Biol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  CAS  PubMed  Google Scholar 

  20. Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    Article  CAS  PubMed  Google Scholar 

  21. Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189:7932–7936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4:e7401

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eren AM, Borisy GG, Huse SM, Mark Welch JL (2014) Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A 111:E2875–E2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen T, Yu W-H, Izard J et al (2010) The human oral microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010:baq013.

    Google Scholar 

  27. Conlan S, Kong HH, Segre JA (2012) Species-level analysis of DNA sequence data from the NIH human microbiome project. PLoS ONE 7:e47075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jensen A, Fagö-Olsen H, Sørensen CH, Kilian M (2013) Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis. PLoS ONE 8:e56418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tu Q, He Z, Zhou J (2014) Strain/species identification in metagenomes using genome-specific markers. Nucleic Acids Res 42:e67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joseph SJ, Li B, Petit RA et al (2015) The single-species metagenome: subtyping Staphylococcus aureus core genome sequences from shotgun metagenomic data. bioRxiv 030692

    Google Scholar 

  31. Drevinek P, Vosahlikova S, Dedeckova K et al (2010) Direct culture-independent strain typing of Burkholderia cepacia complex in sputum samples from patients with cystic fibrosis. J Clin Microbiol 48:1888–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scholz CFP, Jensen A, Lomholt HB et al (2014) A novel high-resolution single locus sequence typing scheme for mixed populations of Propionibacterium acnes in vivo. PLoS ONE 9:e104199

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lomholt HB, Kilian M (2010) Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS ONE 5:e12277

    Article  PubMed  PubMed Central  Google Scholar 

  34. Welcome to Python.org. In: Python.org. https://www.python.org/. Accessed 28 Nov 2015

  35. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  36. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okonechnikov K, Golosova O, Fursov M, UGENE Team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167

    Article  CAS  PubMed  Google Scholar 

  39. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. P. Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scholz, C.F.P., Jensen, A. (2017). Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics