Skip to main content

Murine Mycobacterium marinum Infection as a Model for Tuberculosis

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

Abstract

Mycobacteria are a major human health problem globally. Regarding tuberculosis the situation is worsened by the poor efficacy of current vaccine regimens and by emergence of drug-resistant strains (Manjelievskaia J et al, Trans R Soc Trop Med Hyg 110: 110, 2016; Pereira et al., Lancet Infect Dis 12:300–306, 2012; http://www.who.int/tb/publications/global_report/en/) undermining both disease-prevention and available treatments. Thus, increased basic understanding of mycobacterial—and particularly Mycobacterium tuberculosis—virulence strategies and pathogenesis is of great importance. To this end several in vivo infection models are available (Guirado and Schlesinger, Front Immunol 4:98, 2013; Leung et al., Eur J Immunol 43:2246–2254, 2013; Patel et al., J Lab Physicians 3:75–79, 2011; van Leeuwen et al., Cold Spring Harb Perspect Med 5:a018580, 2015). While these models all have their merits they also exhibit limitations, and none perfectly mimics all aspects of human tuberculosis. Thus, there is a need for multiple models that may complement each other, ultimately allowing us to gain true insight into the pathogenesis of mycobacterial infections.

Here, we describe a recently developed mouse model of Mycobacterium marinum infection that allows kinetic and quantitative studies of disease progression in live animals [8]. Notably, this model exhibits features of human tuberculosis not replicated in M. tuberculosis infected mice, and may provide an important complement to the field. For example, granulomas in the M. marinum model develop central caseating necrosis (Carlsson et al., PLoS Pathog 6:e1000895, 2010), a hallmark of granulomas in human tuberculosis normally not replicated in murine M. tuberculosis infection. Moreover, while tuberculosis is heterogeneous and presents with a continuum of active and latent disease, M. tuberculosis infected mice essentially lack this dynamic range and do not replicate latency (Guirado and Schlesinger, Front Immunol 4:98, 2013; Patel et al., J Lab Physicians 3(2):75–79, 2011). In contrast, M. marinum infected mice may naturally develop latency, as suggested by reduced inflammation and healing of the diseased tissue while low numbers of bacteria persist in granulomatous lesions (Carlsson et al., PLoS Pathog 6:e1000895, 2010). Thus, infection with M. marinum may offer a unique murine model for studying granuloma formation as well as latency—and possibly also for studies of disease-reactivation. In addition to the in vivo model, we describe infection of bone marrow-derived murine macrophages, an in vitro platform enabling detailed mechanistic studies of host-pathogen interactions occurring in the principal host target cell for pathogenic mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manjelievskaia J, Erck D, Piracha S, Schrager L (2016) Drug-resistant TB: deadly, costly and in need of a vaccine. Trans R Soc Trop Med Hyg 110(3):186–191

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pereira SM et al (2012) Effectiveness and cost-effectiveness of first BCG vaccination against tuberculosis in school-age children without previous tuberculin test (BCG-REVAC trial): a cluster-randomised trial. Lancet Infect Dis 12(4):300–306

    Article  PubMed  Google Scholar 

  3. http://www.who.int/tb/publications/global_report/en/

  4. Guirado E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis Granuloma - the critical battlefield in host immunity and disease. Front Immunol 4:98

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leung C et al (2013) Infectious diseases in humanized mice. Eur J Immunol 43(9):2246–2254

    Article  CAS  PubMed  Google Scholar 

  6. Patel K, Jhamb SS, Singh PP (2011) Models of latent tuberculosis: their salient features, limitations, and development. J Lab Physicians 3(2):75–79

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Leeuwen LM, van der Sar AM, Bitter W (2015) Animal models of tuberculosis: zebrafish. Cold Spring Harb Perspect Med 5(3):a018580

    Article  Google Scholar 

  8. Carlsson F et al (2010) Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 6(5):e1000895

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of mycobacterium tuberculosis. Cell 159(7):1497–1509

    Article  CAS  PubMed  Google Scholar 

  10. Stinear TP et al (2008) Insights from the complete genome sequence of mycobacterium marinum on the evolution of mycobacterium tuberculosis. Genome Res 18(5):729–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stamm LM, Brown EJ (2004) Mycobacterium marinum: the generalization and specialization of a pathogenic mycobacterium. Microbes Infect 6(15):1418–1428

    Article  CAS  PubMed  Google Scholar 

  12. Cosma CL, Sherman DR, Ramakrishnan L (2003) The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676

    Article  CAS  PubMed  Google Scholar 

  13. Travis WD, Travis LB, Roberts GD, Su DW, Weiland LW (1985) The histopathologic spectrum in mycobacterium marinum infection. Arch Pathol Lab Med 109(12):1109–1113

    CAS  PubMed  Google Scholar 

  14. Tobin DM, Ramakrishnan L (2008) Comparative pathogenesis of mycobacterium marinum and mycobacterium tuberculosis. Cell Microbiol 10(5):1027–1039

    Article  CAS  PubMed  Google Scholar 

  15. Watkins BY et al (2012) Mycobacterium marinum SecA2 promotes stable granulomas and induces tumor necrosis factor alpha in vivo. Infect Immun 80(10):3512–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaler CR, Horvath C, Lai R, Xing Z (2012) Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis. Clin Dev Immunol 2012:628293

    Article  PubMed  PubMed Central  Google Scholar 

  17. Urdahl KB, Shafiani S, Ernst JD (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4(3):288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stamm LM et al (2003) Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198(9):1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stamm LM et al (2005) Role of the WASP family proteins for Mycobacterium marinum actin tail formation. Proc Natl Acad Sci U S A 102(41):14837–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the Carlsson laboratory is supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, as well as the foundations of Crafoord, Gyllenstiernska Krapperup, Emil and Wera Cornell, Clas Groschinsky, Alfred Österlund, the Swedish Society of Clinical Microbiology, and the Royal Physiographic Society in Lund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredric Carlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lienard, J., Carlsson, F. (2017). Murine Mycobacterium marinum Infection as a Model for Tuberculosis. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics