Skip to main content

Genome-Wide miRNA Screening for Genes Bypassing Oncogene-Induced Senescence

  • Protocol
  • First Online:
  • 3254 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

MicroRNAs are small noncoding RNAs that regulate gene expression by binding to sequences within the 3′-UTR of mRNAs. Genome-wide screens have proven powerful in associating genes with certain phenotypes or signal transduction pathways and thus are valuable tools to define gene function. Here we describe a genome-wide miRNA screening strategy to identify miRNAs that are required to bypass oncogene-induced senescence.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carnero A (2013) Markers of cellular senescence. Methods Mol Biol 965:63–81

    Article  CAS  PubMed  Google Scholar 

  2. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coppe JP et al (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barrett JC et al (1994) Cellular senescence and cancer. Cold Spring Harb Symp Quant Biol 59411–59418

    Google Scholar 

  5. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13(6):748–753

    Article  CAS  PubMed  Google Scholar 

  6. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23(16):2919–2933

    Article  CAS  PubMed  Google Scholar 

  7. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113(2):160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serrano M et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  9. Vergel M et al (2010) Cellular senescence as a target in cancer control. J Aging Res 2011:725365

    PubMed  PubMed Central  Google Scholar 

  10. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37(5):961–976

    Article  CAS  PubMed  Google Scholar 

  11. Roninson IB (2002) Tumor senescence as a determinant of drug response in vivo. Drug Resist Updat 5(5):204–208

    Article  CAS  PubMed  Google Scholar 

  12. Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63(11):2705–2715

    CAS  PubMed  Google Scholar 

  13. Zhao H, Darzynkiewicz Z (2013) Biomarkers of cell senescence assessed by imaging cytometry. Methods Mol Biol 965:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collado M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michaloglou C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  17. Narlik-Grassow M et al (2013) Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One 8(4), e60277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmitt CA et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346

    Article  CAS  PubMed  Google Scholar 

  19. Baudino TA et al (2003) Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 11(4):905–914

    Article  CAS  PubMed  Google Scholar 

  20. Schmitt CA et al (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1(3):289–298

    Article  CAS  PubMed  Google Scholar 

  21. Carnero A, Lleonart ME (2011) Epigenetic mechanisms in senescence, immortalisation and cancer. Biol Rev Camb Philos Soc 86(2):443–455

    Article  PubMed  Google Scholar 

  22. Feliciano A et al (2011) MicroRNAs regulate key effector pathways of senescence. J Aging Res 2011:205378

    PubMed  PubMed Central  Google Scholar 

  23. Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31(4):443–448

    Article  CAS  PubMed  Google Scholar 

  24. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  25. Pospelova TV, Chitikova ZV, Pospelov VA (2013) An integrated approach for monitoring cell senescence. Methods Mol Biol 965:383–408

    Article  CAS  PubMed  Google Scholar 

  26. de la Rosa J et al (2013) Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat Commun 4:2268

    PubMed  PubMed Central  Google Scholar 

  27. Itahana K, Itahana Y, Dimri GP (2013) Colorimetric detection of senescence-associated beta galactosidase. Methods Mol Biol 965:143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bassaneze V, Miyakawa AA, Krieger JE (2013) Chemiluminescent detection of senescence-associated beta galactosidase. Methods Mol Biol 965:157–163

    Article  CAS  PubMed  Google Scholar 

  29. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7):512–522

    Article  PubMed  CAS  Google Scholar 

  30. d’Adda di Fagagna F et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Article  PubMed  CAS  Google Scholar 

  31. Herbig U et al (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513

    Article  CAS  PubMed  Google Scholar 

  32. Ruiz L et al (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS One 3(9), e3230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hewitt G, von Zglinicki T, Passos JF (2013) Cell sorting of young and senescent cells. Methods Mol Biol 1048:31–47

    Article  PubMed  Google Scholar 

  34. Zhang W et al (2008) Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci 83(13–14):475–480

    Article  CAS  PubMed  Google Scholar 

  35. Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Pan KH, Cohen SN (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 100(6):3251–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Young AR, Narita M (2013) Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol 965:1–13

    Article  CAS  PubMed  Google Scholar 

  38. Vistoli G et al (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27

    Article  CAS  PubMed  Google Scholar 

  39. Gasparovic AC et al (2013) Assays for the measurement of lipid peroxidation. Methods Mol Biol 965283–965296

    Google Scholar 

  40. Campisi J et al (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21(6):354–359

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21(1):107–112

    Article  CAS  PubMed  Google Scholar 

  42. Krtolica A et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98(21):12072–12077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bavik C et al (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66(2):794–802

    Article  CAS  PubMed  Google Scholar 

  44. Parrinello S et al (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:118485–118496

    Article  CAS  Google Scholar 

  45. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6(6):472–476

    Article  CAS  PubMed  Google Scholar 

  46. Carnero A, Link W, Martinez JF, Renner O, Castro ME, Blanco F et al (2003) Cellular senescence and cancer. Res Adv Cancer 3:183–198

    Google Scholar 

  47. Chandeck C, Mooi WJ (2010) Oncogene-induced cellular senescence. Adv Anat Pathol 17(1):42–48

    CAS  PubMed  Google Scholar 

  48. Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66(6):2881–2884

    Article  CAS  PubMed  Google Scholar 

  49. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809

    Article  CAS  PubMed  Google Scholar 

  50. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26(56):7773–7779

    Article  CAS  PubMed  Google Scholar 

  51. Ruzankina Y, Asare A, Brown EJ (2008) Replicative stress, stem cells and aging. Mech Ageing Dev 129(7–8):460–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kenyon J, Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res 35(22):7557–7565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Di Micco R et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  CAS  Google Scholar 

  54. Passos JF, Von Zglinicki T (2006) Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 40(12):1277–1283

    Article  CAS  PubMed  Google Scholar 

  55. Parrinello S et al (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5(8):741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vergel M, Carnero A (2010) Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol 12(6):410–417

    Article  PubMed  Google Scholar 

  57. Malumbres M, Carnero A (2003) Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res 5:5–18

    PubMed  Google Scholar 

  58. Blagosklonny MV (2012) Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging 4(3):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775(1):5–20

    CAS  PubMed  Google Scholar 

  60. Mooi WJ, Peeper DS (2006) Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 355(10):1037–1046

    Article  CAS  PubMed  Google Scholar 

  61. Carnero A, Lleonart ME (2011) Epigenetic mechanisms in senescence, immortalisation and cancer. Biol Rev Camb Philos Soc 86(2):443–55

    Google Scholar 

  62. Ferbeyre G et al (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22(10):3497–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Demidenko ZN, Blagosklonny MV (2008) Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7(21):3355–3361

    Article  CAS  PubMed  Google Scholar 

  64. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9(4):683–688

    Article  CAS  PubMed  Google Scholar 

  65. Castro ME et al (2008) PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 29(3):491–499

    Article  CAS  PubMed  Google Scholar 

  66. Narita M, Lowe SW (2004) Executing cell senescence. Cell Cycle 3(3):244–246

    Article  CAS  PubMed  Google Scholar 

  67. Munoz-Espin D et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118

    Article  CAS  PubMed  Google Scholar 

  68. Storer M et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130

    Article  CAS  PubMed  Google Scholar 

  69. Bueno MJ, Perez de Castro I, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7(20):3143–3148

    Article  CAS  PubMed  Google Scholar 

  70. Hartig SM et al (2015) The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab 26(12):733–745

    Article  CAS  PubMed  Google Scholar 

  71. Buhagiar A, Ayers D (2015) Chemoresistance, cancer stem cells, and miRNA influences: the case for neuroblastoma. Anal Cell Pathol 2015:150634

    Article  CAS  Google Scholar 

  72. Loginov VI et al (2015) Methylation of miRNA genes and oncogenesis. Biochemistry 80(2):145–162

    CAS  PubMed  Google Scholar 

  73. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22(1):22–33

    Article  CAS  PubMed  Google Scholar 

  74. Dhahbi JM et al (2011) Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One 6(5), e20509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mercken EM et al (2013) Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging 5(9):692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu FJ, Wen T, Liu L (2012) MicroRNAs as a novel cellular senescence regulator. Ageing Res Rev 11(1):41–50

    Article  PubMed  CAS  Google Scholar 

  77. Chen LH et al (2010) MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev 9(Suppl 1):S59–S66

    Article  CAS  PubMed  Google Scholar 

  78. Bueno MJ, Malumbres M (2011) MicroRNAs and the cell cycle. Biochim Biophys Acta 1812(5):592–601

    Article  CAS  PubMed  Google Scholar 

  79. Martinez I et al (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A 108(2):522–527

    Article  CAS  PubMed  Google Scholar 

  80. Zhao JJ et al (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115(13):2630–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fabbri M, et al. (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 104(40):15805–10.

    Google Scholar 

  82. Christoffersen NR et al (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245

    Article  CAS  PubMed  Google Scholar 

  83. Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    Article  CAS  PubMed  Google Scholar 

  84. Tazawa H et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104(39):15472–15477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marasa BS et al (2010) MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging 2(6):333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Noonan EJ et al (2010) miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1(5):349–358

    Article  PubMed  PubMed Central  Google Scholar 

  87. Noonan EJ et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724

    Article  CAS  PubMed  Google Scholar 

  88. Garzon R et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105(10):3945–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Menghini R et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532

    Article  CAS  PubMed  Google Scholar 

  90. Borgdorff V et al (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29(15):2262–2271

    Article  CAS  PubMed  Google Scholar 

  91. Voorhoeve PM et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    Article  CAS  PubMed  Google Scholar 

  92. Cho WJ et al (2009) miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 28(6):521–527

    Article  CAS  PubMed  Google Scholar 

  93. Leal JA, Feliciano A, Lleonart ME (2013) Stem cell microRNAs in senescence and immortalization: novel players in cancer therapy. Med Res Rev 33(1):112–38

    Google Scholar 

  94. Toledano H (2013) The role of the heterochronic microRNA let-7 in the progression of aging. Exp Gerontol 48(7):667–670

    Article  CAS  PubMed  Google Scholar 

  95. Saunders LR et al (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging 2(7):415–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dellago H et al (2013) High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 12(3):446–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu S et al (2013) MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 112(1):152–164

    Article  CAS  PubMed  Google Scholar 

  98. Xu D et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193(2):409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yamada N et al (2014) Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukaemia jurkat cells by modulating expression of fas-associated protein with death domain (FADD). Biochim Biophys Acta 1843(3):590–602

    Article  CAS  PubMed  Google Scholar 

  100. Motohashi N et al (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 126(Pt 12):2678–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rudolf E, John S, Cervinka M (2012) Irinotecan induces senescence and apoptosis in colonic cells in vitro. Toxicol Lett 214(1):1–8

    Article  CAS  PubMed  Google Scholar 

  102. Motohashi N et al (2012) Identification of a novel microRNA that regulates the proliferation and differentiation in muscle side population cells. Stem Cells Dev 21(16):3031–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mitomo S et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99(2):280–286

    Article  CAS  PubMed  Google Scholar 

  104. Itahana Y, Neo SH, Itahana K (2013) miR-141, a new player, joins the senescence orchestra. Cell Cycle 12(23):3586–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu KR et al (2013) MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. J Cell Sci 126(Pt 23):5422–5431

    Article  CAS  PubMed  Google Scholar 

  106. Dimri M et al (2013) microRNA-141 regulates BMI1 expression and induces senescence in human diploid fibroblasts. Cell Cycle 12(22):3537–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bhaumik D et al (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1(4):402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhaumik D, Patil CK, Campisi J (2009) MicroRNAs: an important player in maintaining a balance between inflammation and tumor suppression. Cell Cycle 8(12):1822

    Article  CAS  PubMed  Google Scholar 

  109. Lena AM et al (2012) MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation. Biochem Biophys Res Commun 423(3):509–514

    Article  CAS  PubMed  Google Scholar 

  110. Foja S et al (2013) Hypoxia supports reprogramming of mesenchymal stromal cells via induction of embryonic stem cell-specific microRNA-302 cluster and pluripotency-associated genes. Cell Reprogram 15(1):68–79

    CAS  PubMed  Google Scholar 

  111. Lin SL, Ying SY (2013) Mechanism and method for generating tumor-free iPS cells using intronic microRNA miR-302 induction. Methods Mol Biol 936:295–312

    Article  CAS  PubMed  Google Scholar 

  112. Kelley K, Lin SL (2012) Induction of somatic cell reprogramming using the microRNA miR-302. Prog Mol Biol Transl Sci 111:83–107

    Article  CAS  PubMed  Google Scholar 

  113. Tome M et al (2014) miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 32(8):2229–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bai XY et al (2011) miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Duale N et al (2007) Molecular portrait of cisplatin induced response in human testis cancer cell lines based on gene expression profiles. Mol Cancer 6:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Song J et al (2015) miR-370 and miR-373 regulate the pathogenesis of osteoarthritis by modulating one-carbon metabolism via SHMT-2 and MECP-2, respectively. Aging Cell 14(5):826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei F et al (2015) Diverse functions of miR-373 in cancer. J Transl Med 13:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gorospe M et al (2011) Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs. Front Mol Neurosci 4:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Economy and Competitiveness, Plan Nacional de I + D + I 2008-2011, Plan Estatal de I + D + I 2013–2016, ISCIII (Fis: PI12/00137, PI15/00045, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-6844 and CTS-1848), and Consejeria de Salud of the Junta de Andalucia (PI-0135-2010, PI-0306-2012 and PI-0096-2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria V. Guijarro or Amancio Carnero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guijarro, M.V., Carnero, A. (2017). Genome-Wide miRNA Screening for Genes Bypassing Oncogene-Induced Senescence. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics