Skip to main content

The Immortal Senescence

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

Activation of oncogenic signaling paradoxically results in the permanent withdrawal from cell cycle and induction of senescence (oncogene-induced senescence (OIS)). OIS is a fail-safe mechanism used by the cells to prevent uncontrolled tumor growth, and, as such, it is considered as the first barrier against cancer. In order to progress, tumor cells thus need to first overcome the senescent phenotype. Despite the increasing attention gained by OIS in the past 20 years, this field is still rather young due to continuous emergence of novel pathways and processes involved in OIS. Among the many factors contributing to incomplete understanding of OIS are the lack of unequivocal markers for senescence and the complexity of the phenotypes revealed by senescent cells in vivo and in vitro. OIS has been shown to play major roles at both the cellular and organismal levels in biological processes ranging from embryonic development to barrier to cancer progression. Here we will briefly outline major advances in methodologies that are being utilized for induction, identification, and characterization of molecular processes in cells undergoing oncogene-induced senescence. The full description of such methodologies is provided in the corresponding chapters of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bianchi-Smiraglia A, Nikiforov MA (2012) Controversial aspects of oncogene-induced senescence. Cell Cycle 11(22):4147–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22(6):816–827

    Article  CAS  PubMed  Google Scholar 

  3. Bansal R, Nikiforov MA (2010) Pathways of oncogene-induced senescence in human melanocytic cells. Cell Cycle 9(14):2782–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522

    Article  CAS  PubMed  Google Scholar 

  5. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Mancera PA, Young AR, Narita M (2014) Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14(8):547–558

    Article  CAS  PubMed  Google Scholar 

  7. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28(2):99–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodier F (2013) Detection of the senescence-associated secretory phenotype (SASP). Methods Mol Biol 965:165–173

    Article  CAS  PubMed  Google Scholar 

  9. Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24(4):835–845

    Article  CAS  PubMed  Google Scholar 

  10. Young AR, Narita M (2009) SASP reflects senescence. EMBO Rep 10(3):228–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  12. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC et al (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195

    Article  CAS  PubMed  Google Scholar 

  14. Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M (2004) Replicative senescence: a critical review. Mech Ageing Dev 125(10–11):827–848

    Article  CAS  PubMed  Google Scholar 

  15. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez I, Almstead LL, DiMaio D (2011) MicroRNAs and senescence. Aging (Albany NY) 3(2):77–78

    Article  CAS  Google Scholar 

  17. Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN (2009) Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta 1792(4):341–352

    Article  CAS  PubMed  Google Scholar 

  18. Overhoff MG, Garbe JC, Koh J, Stampfer MR, Beach DH, Bishop CL (2014) Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Res 42(3):1606–1618

    Article  CAS  PubMed  Google Scholar 

  19. Schraml E, Grillari J (2012) From cellular senescence to age-associated diseases: the miRNA connection. Longev Healthspan 1(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kren A, Baeriswyl V, Lehembre F, Wunderlin C, Strittmatter K, Antoniadis H et al (2007) Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO J 26(12):2832–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8(8):877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH et al (2007) Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 18(11):4543–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jun JI, Lau LF (2010) Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2(9):627–631

    Article  CAS  Google Scholar 

  25. Barrett JC, Annab LA, Alcorta D, Preston G, Vojta P, Yin Y (1994) Cellular senescence and cancer. Cold Spring Harb Symp Quant Biol 59:411–418

    Article  CAS  PubMed  Google Scholar 

  26. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13(6):748–753

    Article  CAS  PubMed  Google Scholar 

  27. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23(16):2919–2933

    Article  CAS  PubMed  Google Scholar 

  28. Prieur A, Peeper DS (2008) Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20(2):150–155

    Article  CAS  PubMed  Google Scholar 

  29. Dimauro T, David G (2010) Ras-induced senescence and its physiological relevance in cancer. Curr Cancer Drug Targets 10(8):869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palmero I, Serrano M (2001) Induction of senescence by oncogenic Ras. Methods Enzymol 333:247–256

    Article  CAS  PubMed  Google Scholar 

  31. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  32. Bitler BG, Fink LS, Wei Z, Peterson JR, Zhang R (2013) A high-content screening assay for small-molecule modulators of oncogene-induced senescence. J Biomol Screen 18(9):1054–1061

    Article  CAS  PubMed  Google Scholar 

  33. Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27(52):6623–6634

    Article  CAS  PubMed  Google Scholar 

  34. Mannava S, Omilian AR, Wawrzyniak JA, Fink EE, Zhuang D, Miecznikowski JC et al (2012) PP2A-B56alpha controls oncogene-induced senescence in normal and tumor human melanocytic cells. Oncogene 31(12):1484–1492

    Article  CAS  PubMed  Google Scholar 

  35. Chang BD, Broude EV, Fang J, Kalinichenko TV, Abdryashitov R, Poole JC et al (2000) p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene 19(17):2165–2170

    Article  CAS  PubMed  Google Scholar 

  36. Acosta JC, Gil J (2012) Senescence: a new weapon for cancer therapy. Trends Cell Biol 22(4):211–219

    Article  CAS  PubMed  Google Scholar 

  37. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4(5):303–313

    Article  CAS  PubMed  Google Scholar 

  38. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346

    Article  CAS  PubMed  Google Scholar 

  39. Chao SK, Horwitz SB, McDaid HM (2011) Insights into 4E-BP1 and p53 mediated regulation of accelerated cell senescence. Oncotarget 2(1–2):89–98

    PubMed  PubMed Central  Google Scholar 

  40. Larsson LG (2011) Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol 21(6):367–376

    Article  CAS  PubMed  Google Scholar 

  41. Mallette FA, Calabrese V, Ilangumaran S, Ferbeyre G (2010) SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging (Albany NY) 2(7):445–452

    Article  CAS  Google Scholar 

  42. Martinelli P, Bonetti P, Sironi C, Pruneri G, Fumagalli C, Raviele PR et al (2011) The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway. Blood 117(24):6617–6626

    Article  PubMed  Google Scholar 

  43. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128):661–665

    Article  CAS  PubMed  Google Scholar 

  44. Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM (2008) Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28(5):1713–1723

    Article  CAS  PubMed  Google Scholar 

  45. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637

    Article  CAS  PubMed  Google Scholar 

  47. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  CAS  Google Scholar 

  48. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR et al (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8(10):1053–1063

    Article  CAS  PubMed  Google Scholar 

  49. Harada H, Nakagawa H, Oyama K, Takaoka M, Andl CD, Jacobmeier B et al (2003) Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Mol Cancer Res 1(10):729–738

    CAS  PubMed  Google Scholar 

  50. Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW (2011) TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci U S A 108(21):8668–8673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ et al (2007) Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 6(4):577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24(7):2842–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drayton S, Rowe J, Jones R, Vatcheva R, Cuthbert-Heavens D, Marshall J et al (2003) Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 4(4):301–310

    Article  CAS  PubMed  Google Scholar 

  54. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  55. Bueno MJ, Perez de Castro I, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7(20):3143–3148

    Article  CAS  PubMed  Google Scholar 

  56. Hartig SM, Hamilton MP, Bader DA, McGuire SE (2015) The miRNA Interactome in Metabolic Homeostasis. Trends Endocrinol Metab 26(12):733–745

    Article  CAS  PubMed  Google Scholar 

  57. Buhagiar A, Ayers D (2015) Chemoresistance, cancer stem cells, and miRNA influences: the case for neuroblastoma. Anal Cell Pathol 2015:150634

    Article  CAS  Google Scholar 

  58. Loginov VI, Rykov SV, Fridman MV, Braga EA (2015) Methylation of miRNA genes and oncogenesis. Biochemistry (Mosc) 80(2):145–162

    Article  CAS  Google Scholar 

  59. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22(1):22–33

    Article  CAS  PubMed  Google Scholar 

  60. Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG et al (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29(15):2262–2271

    Article  CAS  PubMed  Google Scholar 

  61. Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28(7):2167–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ et al (2010) The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res 70(21):8547–8557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245

    Article  CAS  PubMed  Google Scholar 

  64. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193(2):409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brooks CL, Gu W (2009) How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 9(2):123–128

    Article  CAS  PubMed  Google Scholar 

  66. Huang J, Gan Q, Han L, Li J, Zhang H, Sun Y et al (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3(3):e1710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS et al (2006) Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 26(1):28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koutsodontis G, Tentes I, Papakosta P, Moustakas A, Kardassis D (2001) Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein. J Biol Chem 276(31):29116–29125

    Article  CAS  PubMed  Google Scholar 

  69. Tapias A, Ciudad CJ, Roninson IB, Noe V (2008) Regulation of Sp1 by cell cycle related proteins. Cell Cycle 7(18):2856–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohtani N, Mann DJ, Hara E (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci 100(5):792–797

    Article  CAS  PubMed  Google Scholar 

  71. Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J et al (2007) CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol 27(12):4273–4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612

    Article  CAS  PubMed  Google Scholar 

  73. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  74. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  76. Wang YH, Yu XH, Luo SS, Han H (2015) Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing. Immun Ageing 12:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wajapeyee N, Deibler SK, Green MR (2013) Genome-wide RNAi screening to identify regulators of oncogene-induced cellular senescence. Methods Mol Biol 965:373–382

    Article  CAS  PubMed  Google Scholar 

  78. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132(3):363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397–408

    Article  CAS  PubMed  Google Scholar 

  80. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6(6):472–476

    Article  CAS  PubMed  Google Scholar 

  81. Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A et al (2014) Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis 5:e1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang NC, Hu ML (2004) A fluorimetric method using fluorescein di-beta-D-galactopyranoside for quantifying the senescence-associated beta-galactosidase activity in human foreskin fibroblast Hs68 cells. Anal Biochem 325(2):337–343

    Article  CAS  PubMed  Google Scholar 

  83. Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40(10):813–819

    Article  CAS  PubMed  Google Scholar 

  84. Yegorov YE, Akimov SS, Hass R, Zelenin AV, Prudovsky IA (1998) Endogenous beta-galactosidase activity in continuously nonproliferating cells. Exp Cell Res 243(1):207–211

    Article  CAS  PubMed  Google Scholar 

  85. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33(5):611–619

    Article  CAS  PubMed  Google Scholar 

  86. Gerland LM, Peyrol S, Lallemand C, Branche R, Magaud JP, Ffrench M (2003) Association of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. Exp Gerontol 38(8):887–895

    Article  CAS  PubMed  Google Scholar 

  87. Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP et al (2013) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 5(1):37–50

    Article  CAS  Google Scholar 

  88. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Herranz N, Gallage S, Gil J (2015) TORn about SASP regulation. Cell Cycle 14(24):3771–3772

    Article  CAS  PubMed  Google Scholar 

  90. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weyemi U, Dupuy C (2012) The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses. Mutat Res 751(2):77–81

    Article  CAS  PubMed  Google Scholar 

  92. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B et al (2012) ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31(9):1117–1129

    Article  CAS  PubMed  Google Scholar 

  93. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556

    Article  CAS  PubMed  Google Scholar 

  94. Brugat T, Nguyen-Khac F, Grelier A, Merle-Beral H, Delic J (2010) Telomere dysfunction-induced foci arise with the onset of telomeric deletions and complex chromosomal aberrations in resistant chronic lymphocytic leukemia cells. Blood 116(2):239–249

    Article  CAS  PubMed  Google Scholar 

  95. Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V et al (2012) Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 31(13):2839–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mannava S, Moparthy KC, Wheeler LJ, Natarajan V, Zucker SN, Fink EE et al (2013) Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. Am J Pathol 182(1):142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A et al (2013) Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 3(4):1252–1265

    Article  CAS  PubMed  Google Scholar 

  98. Mannava S, Moparthy KC, Wheeler LJ, Leonova KI, Wawrzyniak JA, Bianchi-Smiraglia A et al (2012) Ribonucleotide reductase and thymidylate synthase or exogenous deoxyribonucleosides reduce DNA damage and senescence caused by C-MYC depletion. Aging (Albany NY) 4(12):917–922

    Article  CAS  Google Scholar 

  99. Liu YC, Li F, Handler J, Huang CR, Xiang Y, Neretti N et al (2008) Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One 3(7):e2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG et al (2008) Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7(15):2392–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145(3):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gey C, Seeger K (2013) Metabolic changes during cellular senescence investigated by proton NMR-spectroscopy. Mech Ageing Dev 134(3–4):130–138

    Article  CAS  PubMed  Google Scholar 

  103. Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S et al (2012) Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 11(7):1383–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Johmura Y, Sun J, Kitagawa K, Nakanishi K, Kuno T, Naiki-Ito A et al (2016) SCF(Fbxo22)-KDM4A targets methylated p53 for degradation and regulates senescence. Nat Commun 7:10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhu H, Ren S, Bitler BG, Aird KM, Tu Z, Skordalakes E et al (2015) SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase. Cell Rep 13(6):1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bengsch F, Tu Z, Tang HY, Zhu H, Speicher DW, Zhang R (2015) Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. Cell Cycle 14(10):1540–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243(4898):1576–1583

    Article  CAS  PubMed  Google Scholar 

  108. Mittal R, McMahon HT (2009) Arrestins as adaptors for ubiquitination in endocytosis and sorting. EMBO Rep 10(1):41–43

    Article  CAS  PubMed  Google Scholar 

  109. Neutzner M, Neutzner A (2012) Enzymes of ubiquitination and deubiquitination. Essays Biochem 52:37–50

    Article  CAS  PubMed  Google Scholar 

  110. Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441(1):1–21

    Article  CAS  PubMed  Google Scholar 

  111. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17(9):1205–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17(8):1049–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S et al (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332(6032):966–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Young AR, Narita M, Narita M (2011) Spatio-temporal association between mTOR and autophagy during cellular senescence. Autophagy 7(11):1387–1388

    Article  CAS  PubMed  Google Scholar 

  117. Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF et al (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23(7):798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gewirtz DA (2013) Autophagy and senescence: a partnership in search of definition. Autophagy 9(5):808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L et al (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349(6255):aaa5612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Jin M, Liu X, Klionsky DJ (2013) SnapShot: selective autophagy. Cell 152(1–2):368–368.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20(1):21–30

    Article  CAS  PubMed  Google Scholar 

  123. Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M (2008) Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 22(4):781–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bauer J, Curtin JA, Pinkel D, Bastian BC (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182

    Article  CAS  PubMed  Google Scholar 

  125. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33(1):19–20

    Article  CAS  PubMed  Google Scholar 

  126. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147

    Article  CAS  PubMed  Google Scholar 

  127. Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T et al (2003) Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95(24):1878–1890

    Article  CAS  PubMed  Google Scholar 

  128. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642

    Article  CAS  PubMed  Google Scholar 

  129. Baek KH, Bhang D, Zaslavsky A, Wang LC, Vachani A, Kim CF et al (2013) Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors. J Clin Invest 123(10):4375–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M et al (2014) Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21(6):998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Santoriello C, Deflorian G, Pezzimenti F, Kawakami K, Lanfrancone L, d'Adda di Fagagna F et al (2009) Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. Dis Model Mech 2(1–2):56–67

    Article  CAS  PubMed  Google Scholar 

  132. Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–551

    Article  CAS  PubMed  Google Scholar 

  133. Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J et al (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18(34):4808–4818

    Article  CAS  PubMed  Google Scholar 

  134. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59(15):3761–3767

    CAS  PubMed  Google Scholar 

  135. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62(6):1876–1883

    Google Scholar 

  136. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1(3):289–298

    Article  CAS  PubMed  Google Scholar 

  137. Schmitt CA, Lowe SW (2002) Apoptosis and chemoresistance in transgenic cancer models. J Mol Med (Berl) 80(3):137–146

    Article  CAS  Google Scholar 

  138. Schmitt CA, Rosenthal CT, Lowe SW (2000) Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6(9):1029–1035

    Article  CAS  PubMed  Google Scholar 

  139. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM, Schlegelberger B et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665

    Article  CAS  PubMed  Google Scholar 

  140. Jing H, Kase J, Dorr JR, Milanovic M, Lenze D, Grau M et al (2011) Opposing roles of NF-kappaB in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev 25(20):2137–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH et al (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501(7467):421–425

    Article  PubMed  CAS  Google Scholar 

  142. Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105(4):370–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ewald JA, Desotelle JA, Wilding G, Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102(20):1536–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Reimann M, Lee S, Loddenkemper C, Dorr JR, Tabor V, Aichele P et al (2010) Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17(3):262–272

    Article  CAS  PubMed  Google Scholar 

  145. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6):1006–1018

    Article  CAS  PubMed  Google Scholar 

  146. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130

    Article  CAS  PubMed  Google Scholar 

  147. Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118

    Article  CAS  PubMed  Google Scholar 

  148. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Nikiforov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bianchi-Smiraglia, A., Lipchick, B.C., Nikiforov, M.A. (2017). The Immortal Senescence. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics