Skip to main content

Urine Metabolomics in Hypertension Research

  • Protocol
  • First Online:
Hypertension

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1527))

Abstract

Functional genomics requires an understanding of the complete network of changes within an organism by extensive measurements of moieties from mRNA, proteins, and metabolites. Metabolomics utilizes analytic chemistry tools to profile the complete spectrum of metabolites found in a tissue, cells, or biofluids using a wide range of tools from infrared spectroscopy, fluorescence spectroscopy, NMR spectroscopy, and mass spectrometry. In this protocol, we outline a procedure for performing metabolomic analysis of urine samples using liquid chromatography–mass spectrometry (LC-MS). We outline the advantages of using this approach and summarize some of the early promising studies in cardiovascular diseases using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heather LC et al (2012) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2012.12.001

    PubMed  Google Scholar 

  2. Griffin JL et al (2011) Metabolomics as a tool for cardiac research. Nat Rev Cardiol 8:630–643

    Article  CAS  PubMed  Google Scholar 

  3. Wishart DS et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  CAS  PubMed  Google Scholar 

  4. Kemperman RF et al (2007) Comparative urine analysis by liquid chromatography-mass spectrometry and multivariate statistics: method development, evaluation, and application to proteinuria. J Proteome Res 6:194–206

    Article  CAS  PubMed  Google Scholar 

  5. Ryan D et al (2011) Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 684:8–20

    Article  CAS  PubMed  Google Scholar 

  6. Teul J et al (2009) Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC-MS and 1H NMR fingerprints. J Proteome Res 8:5580–5589

    Article  CAS  PubMed  Google Scholar 

  7. Kang SM et al (2011) (1)H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clin Biochem 44:293–299

    Article  PubMed  Google Scholar 

  8. Wang Z et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang AQ, Mitchell SC, Smith RL (1999) Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 37:515–520

    Article  CAS  PubMed  Google Scholar 

  10. Holmes E et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453:396–400

    Article  CAS  PubMed  Google Scholar 

  11. Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  PubMed Central  Google Scholar 

  12. Suhre K et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60

    Article  CAS  PubMed  Google Scholar 

  13. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  14. Creek DJ et al (2012) IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 28:1048–1049

    Article  CAS  PubMed  Google Scholar 

  15. Scheltema RA et al (2011) PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem 83:2786–2793

    Article  CAS  PubMed  Google Scholar 

  16. Smith CA et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  17. Breitling R et al (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Tsiropoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tsiropoulou, S., McBride, M., Padmanabhan, S. (2017). Urine Metabolomics in Hypertension Research. In: Touyz, R., Schiffrin, E. (eds) Hypertension. Methods in Molecular Biology, vol 1527. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6625-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6625-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6623-3

  • Online ISBN: 978-1-4939-6625-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics