Skip to main content

NADPH Oxidases and Measurement of Reactive Oxygen Species

  • Protocol
  • First Online:
Hypertension

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1527))

Abstract

The NADPH oxidase (Nox) family of enzymes is expressed in many tissues that are involved in hypertension, including blood vessels, kidney, and brain. In these tissues, the products of NADPH oxidase activity, superoxide and ultimately hydrogen peroxide, act as intracellular and extracellular messengers during compartmentalized cellular signaling. The correct measurement of Nox activity and its products is crucial to enable studies of how these signaling pathways affect the molecular mechanisms underlying hypertension. Here, we describe methods for detection and measurement of hydrogen peroxide and superoxide derived from NADPH oxidases in biological samples such as cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30(4):653–661

    Article  CAS  PubMed  Google Scholar 

  2. Suh YA et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748):79–82

    Article  CAS  PubMed  Google Scholar 

  3. Datla SR, Griendling KK (2010) Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension 56(3):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amanso AM, Griendling KK (2012) Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front Biosci (Schol Ed) 4:1044–1064

    Google Scholar 

  5. Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110(10):1364–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al Ghouleh I et al (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen Dinh Cat A, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13(2):122–128

    Article  CAS  PubMed  Google Scholar 

  8. Halliwell B, Zhao K, Whiteman M (1999) Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res 31(6):651–669

    Article  CAS  PubMed  Google Scholar 

  9. Price DT, Vita JA, Keaney JF Jr (2000) Redox control of vascular nitric oxide bioavailability. Antioxid Redox Signal 2(4):919–935

    Article  CAS  PubMed  Google Scholar 

  10. Grote K et al (2006) Critical role for p47phox in renin-angiotensin system activation and blood pressure regulation. Cardiovasc Res 71(3):596–605

    Article  CAS  PubMed  Google Scholar 

  11. Dikalova AE et al (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299(3):H673–H679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang HD et al (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82(7):810–818

    Article  CAS  PubMed  Google Scholar 

  13. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohashi J et al (2012) Mechanisms for enhanced endothelium-derived hyperpolarizing factor-mediated responses in microvessels in mice. Circ J 76(7):1768–1779

    Article  CAS  PubMed  Google Scholar 

  15. Schroder K et al (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110(9):1217–1225

    Article  PubMed  Google Scholar 

  16. Fujimoto S et al (2001) Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery. Eur J Pharmacol 412(3):291–300

    Article  CAS  PubMed  Google Scholar 

  17. Lucchesi PA, Belmadani S, Matrougui K (2005) Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. J Hypertens 23(3):571–579

    Article  CAS  PubMed  Google Scholar 

  18. Zhang DX et al (2012) H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110(3):471–480

    Article  CAS  PubMed  Google Scholar 

  19. Suvorava T et al (2005) Endogenous vascular hydrogen peroxide regulates arteriolar tension in vivo. Circulation 112(16):2487–2495

    Article  CAS  PubMed  Google Scholar 

  20. Laurindo FR, Fernandes DC, Santos CX (2008) Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol 441:237–260

    Article  CAS  PubMed  Google Scholar 

  21. Dikalov S, Griendling KK, Harrison DG (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49(4):717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhee SG et al (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29(6):539–549

    Article  CAS  PubMed  Google Scholar 

  23. Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex red to resorufin: implications of exposing the Amplex red assay to light. Free Radic Biol Med 53(5):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams HC et al (2012) Role of coronin 1B in PDGF-induced migration of vascular smooth muscle cells. Circ Res 111(1):56–65

    Article  CAS  PubMed  Google Scholar 

  25. Dikalov SI et al (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45(9):1340–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mueller S, Millonig G, Waite GN (2009) The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Adv Med Sci 54(2):121–135

    Article  CAS  PubMed  Google Scholar 

  27. Gupte RS et al (2009) Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic Biol Med 47(3):219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasquez-Vivar J et al (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 95(16):9220–9225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases.Anal Biochem. 253(2):162–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy K. Griendling Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Amanso, A., Lyle, A.N., Griendling, K.K. (2017). NADPH Oxidases and Measurement of Reactive Oxygen Species. In: Touyz, R., Schiffrin, E. (eds) Hypertension. Methods in Molecular Biology, vol 1527. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6625-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6625-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6623-3

  • Online ISBN: 978-1-4939-6625-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics