Skip to main content

Chromosome Formation During Fertilization in Eggs of the Teleost Oryzias latipes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

Upon fertilization, eggs shift their cell cycle from the meiotic to the mitotic pattern for embryogenesis. The information on chromosome formation has been accumulated by various experiments using inhibitors to affect formation and behavior of chromosomes in the cycle of cell proliferation. Based on experimental results on meiosis and early stages of development of the teleost Oryzias latipes, we discuss the roles of the activities of histone H1 kinase, microtubule-associated protein kinase, DNA polymerase, DNA topoisomerase, and other cytoplasmic factors in formation and separation of chromosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Masui Y, Clarke HJ (1979) Oocyte maturation. Int Rev Cytol 57:185–282

    Article  CAS  PubMed  Google Scholar 

  2. Yamashita M (2000) Toward modeling of a general mechanism of MPF formation during oocyte maturation in vertebrates. Zoolog Sci 17:841–851

    Article  CAS  Google Scholar 

  3. Sagata N, Oscarsson M, Copeland T, Brumbaugh J, Woude GFV (1988) Function of c-mos protooncogene product in meiotic maturation in Xenopus oocytes. Nature 335:519–525

    Article  CAS  PubMed  Google Scholar 

  4. Freeman RS, Kanki JP, Ballantyne SM, Pickham KM, Donophue DJ (1989) Effects of the v-mos on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos. J Cell Biol 111:533–541

    Article  Google Scholar 

  5. Sheets MD, Wu M, Wickens M (1995) Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 274:511–546

    Article  Google Scholar 

  6. Tokumoto T, Yamashita M, Tokumoto M, Tanaka H, Katsu Y, Horiguchi R, Kajiura H, Nagahama Y (1997) Initiation of cyclin B degeneration by the 26S proteasome upon egg activation. J Cell Biol 138:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Josefsberg LB, Galiani D, Dantes A, Amsterdam A, Dekel N (2000) The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol Reprod 62:1270–1277

    Article  CAS  PubMed  Google Scholar 

  8. Mueller PR, Coleman TR, Dunphy WG (1995) Cell cycle regulation of a Xenopus Wee 1-like kinase. Mol Biol Cell 6:119–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Longo FJ (1997) Fertilization. Chapman & Hall, New York

    Google Scholar 

  10. Iwamatsu T, Kobayashi H (2002) Electron microscopic observations of karyogamy in the fish egg. Dev Growth Differ 44:357–363

    Article  PubMed  Google Scholar 

  11. Clarke HJ, Masui Y (1986) Transformation of sperm nuclei to metaphase chromosomes in the cytoplasm of maturing oocytes of the mouse. J Cell Biol 102:1039–1046

    Article  CAS  PubMed  Google Scholar 

  12. Das NK, Baker C (1976) Mitotic chromosome condensation in the sperm nucleus during postfertilization maturation division in Urechis eggs. J Cell Biol 68:155–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tchou S, Chen CH (1942) Fertilization of artificially ovulated pre mature eggs of Bufo. Sci Rec China (K’e Hsuch Chi u) 1:203–208

    Google Scholar 

  14. Elinson RP (1977) Fertilization of immature frog eggs: cleavage and development following subsequent activation. J Embryol Exp Morphol 37:187–201

    CAS  PubMed  Google Scholar 

  15. Iwamatsu T, Chang MC (1972) Sperm penetration in vitro of mouse oocytes at various times during maturation. J Reprod Fertil 31:237–247

    Article  CAS  PubMed  Google Scholar 

  16. Abeydeera LR, Niwa K, Okuda K (1993) Maturation promoting factor (MPF) is responsible for the transformation of sperm nuclei to metaphase chromosomes in maturing bovine oocytes in vitro. J Reprod Fertil 98:409–414

    Article  CAS  PubMed  Google Scholar 

  17. Gurdon JB (1968) Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morphol 20:401–414

    CAS  PubMed  Google Scholar 

  18. Ziegler D, Masui Y (1973) Control of chromosome behavior in amphibian oocytes. II. The effect of inhibitors of RNA and protein synthesis on the induction of chromosome condensation. J Cell Biol 68:620–628

    Article  Google Scholar 

  19. Moriya M, Katagiri C (1976) Microinjection of toad sperm into oocytes undergoing maturation division. Dev Growth Differ 18:349–356

    Article  Google Scholar 

  20. Masui Y, Lohka MJ, Shibuya EK (1984) Roles of Ca ions and ooplasmic factors in the resumption of metaphase-arrested meiosis in Rana pipiens oocytes. Symp Soc Exp Biol 38:45–66

    CAS  PubMed  Google Scholar 

  21. Lohka MJ, Masui Y (1984) Effects of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in free preparations from unactivated Rana pipiens eggs. Dev Biol 103:434–442

    Article  CAS  PubMed  Google Scholar 

  22. Yamashita M (1983) Electron microscopic observations during monospermic fertilization process of the brittle-star Amphipholis kochii Lutken. J Exp Zool 2289:109–120

    Article  Google Scholar 

  23. Longo FJ, Mathews L, Hedgecock D (1993) Morphogenesis of maternal and paternal genomes in fertilized oyster eggs (Crassostrea gigas): effects of cytocharasin B at different periods during meiotic maturation. Biol Bull 185:197–214

    Article  CAS  PubMed  Google Scholar 

  24. Longo FJ, Anderson E (1970) An ultrastructural analysis of fertilization in the surf clam, Spisula solidissima. I. Polar body formation and development of the female pro-nucleus. J Ultrastruct Res 33:495–514

    Article  CAS  PubMed  Google Scholar 

  25. Iwamatsu T (1966) Role of the germinal vesicle materials on the acquisition of developmental capacity of the fish oocyte. Embryologia 9:205–221

    Article  CAS  PubMed  Google Scholar 

  26. Iwamatsu T, Ohta T (1980) The changes in sperm nuclei after penetrating fish oocytes matured without germinal vesicle material in their cytoplasm. Gamete Res 3:56–67

    Article  Google Scholar 

  27. Longo FJ (1973) The unset of DNA synthesis and its relation to morphogenetic events of the pronuclei in activated eggs of the sea urchin, Arbacia ounctulata. Dev Biol 30:56–67

    Article  CAS  PubMed  Google Scholar 

  28. Longo FJ, Kuncle M (1978) Transformation of sperm nuclei upon insemination. Curr Top Dev Biol 12:149–184

    Article  CAS  PubMed  Google Scholar 

  29. Wolgemuth DJ (1983) Synthetic activities of the mammalian early embryo: molecular and genetic alterations following fertilization. In: Hartmann JF (ed) Mechanisms and control of animal fertilization. Academic Press, New York, pp 415–452

    Google Scholar 

  30. Ohsumi K, Katagiri C, Yanagimachi R (1996) Development of pronuclei from human spermatozoa injected microsurgically into frog (Xenopus) eggs. J Exp Zool 237:319–325

    Article  Google Scholar 

  31. Kopecny V, Pavlok A (1975) Autoradiographic study of mouse spermatozoan arginine-rich nuclear protein in fertilization. J Exp Zool 191:85–96

    Article  CAS  PubMed  Google Scholar 

  32. Poccia D, Salik J, Krystal G (1981) Transitions in histone variants of the male pronucleus following fertilization and evidence for a material store of cleavage stage histones in the sea urchin egg. Dev Biol 82:287–296

    Article  CAS  PubMed  Google Scholar 

  33. Rodman TC, Pruslin FH, Hoffmann HP, Allfrey VG (1981) Turnover of basic chromosomal proteins in fertilized eggs. A cytoimmunochemical study of events in vitro. J Cell Biol 90:351–361

    Article  CAS  PubMed  Google Scholar 

  34. Zirkin BR, Soucek DA, Chang TSK, Perreault SD (1985) In vitro and in vivo studies of mammalian sperm nuclear decondensation. Gamete Res 11:349–365

    Article  CAS  Google Scholar 

  35. Ohsumi K, Katagiri C (1991) Occurrence of H1 subtypes specific to pronuclei and cleavage stage cell nuclei of anuran amphibians. Dev Biol 147:110–120

    Article  CAS  PubMed  Google Scholar 

  36. Philpott A, Leno GH (1992) Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell 69:759–767

    Article  CAS  PubMed  Google Scholar 

  37. Luthardt FW, Donohue RP (1973) Pronuclear DNA synthesis in mouse eggs: an autographic study. Exp Cell Res 82:143–151

    Article  CAS  PubMed  Google Scholar 

  38. Naish SJ, Perreault SD, Foehner L, Zirkin BR (1993) DNA synthesis in the fertilizing hamster sperm nucleus: sperm temperate availability and egg cytoplasmic control. Biol Reprod 36:245–253

    Article  Google Scholar 

  39. Barns FL, Callos P, Powell R, Westhusin WA, Shepherd D (1993) Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos. Mol Reprod Dev 36:33–41

    Article  Google Scholar 

  40. Campbell KHS, Loi P, Cappai P, Wilmut I (1994) Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S phase of enucleated activated oocytes. Biol Reprod 50:1385–1393

    Article  CAS  PubMed  Google Scholar 

  41. Laurincik J, Kopecny V, Hyttel P (1994) Pronucleus development and DNA synthesis in bovine zygotes in vitro. Theriogenology 42:1285–1293

    Article  Google Scholar 

  42. Hirano T (2000) Chromosome cohesion, condensation, and separation. Annu Rev Biochem 69:115–144

    Article  CAS  PubMed  Google Scholar 

  43. Iwamatsu T, Shibata Y, Yamashita M (1999) Studies on fertilization of the teleost. II. Nuclear behavior and changes in histone H1 kinase. Dev Growth Differ 41:473–482

    Article  CAS  PubMed  Google Scholar 

  44. Nomura A, Maruyama YK, Yoneda M (1991) Initiation of DNA replication cycle in fertilized eggs of the starfish, Asterina pectinifera. Dev Biol 143:289–296

    Article  CAS  PubMed  Google Scholar 

  45. Simmel EB, Karnofsky DA (1961) Observation on the uptake of tritiated thymidine in the pronuclei of fertilized sand dollar embryos. J Biophys Biochem Cytol 10:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oprecue S, Thibault C (1965) Duplication de l’AND dans les oeufs de lapine apres la fecundation. Ann Biol Anim Biochim Biophys 5:151–156

    Article  Google Scholar 

  47. Howlett SK, Bolton VN (1985) Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryo-genesis. J Embryol Exp Morphol 67:175–206

    Google Scholar 

  48. Abramczuk J, Sawicki W (1975) Pro-nuclear synthesis of DNA in fertilized and parthenogenetically activated mouse eggs: a cytophotometric study. Exp Cell Res 92:361–372

    Article  CAS  PubMed  Google Scholar 

  49. Balkan W, Martin RH (1982) Timing of human sperm chromosome replication following fertilization of hamster eggs in vitro. Gamete Res 6:115–119

    Article  Google Scholar 

  50. Szollosi D (1966) Time and duration of DNA synthesis in rabbit eggs after sperm penetration. Anat Rec 154:209–212

    Article  CAS  PubMed  Google Scholar 

  51. Longo FJ, Plunkett W (1973) The onset of DNA synthesis and its relation to morphogenetic events of the pronuclei in activated eggs of the sea urchin, Arbacia punctulata. Dev Biol 30:56–67

    Article  CAS  PubMed  Google Scholar 

  52. Whitaker MJ, Steinhardt RA (1981) The relation between the increase in reduced nicotinamide nucleotides and the initiation of DNA synthesis in the sea urchin eggs. Cell 25:95–103

    Article  CAS  PubMed  Google Scholar 

  53. Collas P, Chang T, Long C, Robl JM (1995) Inactivation of histone H1 kinase by Ca2+ in rabbit oocytes. Mol Reprod Dev 40:253–258

    Article  CAS  PubMed  Google Scholar 

  54. Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45

    Article  CAS  PubMed  Google Scholar 

  55. Enoch T, Nurse P (1990) Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60:665–673

    Article  CAS  PubMed  Google Scholar 

  56. Pagano M, Pepperkok R, Verde F, Ansorge W, Graetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tosuji H, Mabuchi I, Fusetani N, Nakazawa H (1992) Calyculin A induces contractile ring-like apparatus formation and condensation of chromosomes in unfertilized sea urchin eggs. Proc Natl Acad Sci U S A 89:10613–10617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Someya A, Tanaka N, Okuyama A (1993) Inhibition of initiation of DNA replication in Xenopus egg extracts by a phosphatase inhibitor, Calyculin A. Biochem Biophys Res Commun 196:85–91

    Article  CAS  PubMed  Google Scholar 

  59. Iwamatsu T, Shibata Y, Hara O, Yamashita M, Ikegami S (2002) Studies on fertilization in the teleost. IV. Effects of aphidicolin and Camptothecin on chromosome formation in fertilized medaka eggs. Dev Growth Differ 44:293–302

    Article  CAS  PubMed  Google Scholar 

  60. Doree M, Peaucellier G, Picard A (1983) Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic mat- uration of starfish oocytes. Dev Biol 99:489–501

    Article  CAS  PubMed  Google Scholar 

  61. Gerhart JC, Wu M, Kirschner MW (1984) Cell cycle dynamics of an M phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98:1247–1255

    Article  CAS  PubMed  Google Scholar 

  62. Newport JW, Kirshner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37:731–742

    Article  CAS  PubMed  Google Scholar 

  63. Picard A, Labbé JC, Peaucellier G, Le Bouffant F, Le Peuch C, Doree M (1987) Changes in the activity of the maturation-promoting factor are correlated with those of a major cAMP- and calcium independent protein kinase during the first mitotic cell cycles in the starfish embryo. Dev Growth Differ 29:93–103

    Article  CAS  Google Scholar 

  64. Iwamatsu T, Kobayashi H, Yamashita M, Shibata Y, Yusa A (2003) Experimental hybridization among Oryzias species. II. Karyogamy and abnormality of chromosome separation in the cleavage of interspecific hybrids between Oryzias latipes and O. javanicus. Zoolog Sci 20:1381–1387

    Article  PubMed  Google Scholar 

  65. Sakai C, Konno F, Nakano O, Iwai T, Yokota T, Lee J, Nishida-Umehara C, Kuroiwa A, Matsuda Y, Yamashita M (2007) Chromosome elimination in the interspecific hybrid medaka between Oryias latipes and O. hubbsi. Chromosome Res 15:697–709

    Article  CAS  PubMed  Google Scholar 

  66. Loupart ML, Krause SA, Heck MMS (2000) Aberrant replication timing induces chromosome condensation in Drosophila ORC2 mutants. Curr Biol 10:1547–1556

    Article  CAS  PubMed  Google Scholar 

  67. Nagano H, Okano K, Ikegami S, Katagiri C (1982) Changes in intracellular location of DNA polymerase-alpha during oocyte maturation of the toad, Bufo bufo japonicas. Biochem Biophys Res Commun 106:683–690

    Article  CAS  PubMed  Google Scholar 

  68. Fox AM, Breaux CB, Benbow RM (1980) Intracellular localization of DNA polymerase activities within large oocytes of the frog, Xenopus laevis. Dev Biol 80:79–95

    Article  CAS  PubMed  Google Scholar 

  69. Grippo PC, Taddei C, Locorotondo G, Gambino-Giuffrida A (1977) Cellular localization of DNA polymerase activities in full-grown oocytes and embryos of Xenopus laevis. Exp Cell Res 190:247–252

    Article  Google Scholar 

  70. Martini G, Tato F, Attardi DG, Tocchini-Valentini GP (1976) Nuclear localization of DNA polymerase alpha in Xenopus laevis. Biochem Biophys Res Commun 72:875–879

    Article  CAS  PubMed  Google Scholar 

  71. Shioda M, Nagano H, Mano Y (1977) Cytoplasmic location of DNA polymerase-α and -β of sea urchin eggs. Biochem Biophys Res Commun 78:1362–1368

    Article  CAS  PubMed  Google Scholar 

  72. Haraguchi T, Nagano H (1983) Isolation and characterization of DNA polymerases from mature oocytes of the starfish, Asterina pectinifera. J Biochem 93:87–97

    Article  Google Scholar 

  73. Oishi N, Shimada H (1983) Intracellular localization of DNA polymerases in the oocyte of starfish, Asterina pectinifera. Dev Growth Differ 25:547–551

    Article  CAS  Google Scholar 

  74. Iwamatsu T, Haraguchi T, Nagano H (2010) Cytoplasmic location of DNA polymerase in oocytes of the teleost fish, Oryzias latipes. Aichi Univ Educat (Nat Sci) 59:1–8

    Google Scholar 

  75. Ikegami S, Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275:458–460

    Article  CAS  PubMed  Google Scholar 

  76. Ikegami S, Amemiya S, Oguro M, Nagano H, Mano Y (1979) Inhibition by aphidicolin of cell cycle progression and DNA replication in sea urchin embryos. J Cell Physiol 100:439–444

    Article  CAS  PubMed  Google Scholar 

  77. Oguro M, Suzuki-Hori C, Nagano H, Mano Y, Ikegami S (1979) The mode of inhibitory action by aphidicolin on eukaryotic DNA polymerase-α. Eur J Biochem 97:603–607

    Article  CAS  PubMed  Google Scholar 

  78. Brachet J, De Ptrocellis B (1981) The effects of aphidicolin, an inhibitor of DNA replication, on sea urchin development. Exp Cell Res 135:179–189

    Article  CAS  PubMed  Google Scholar 

  79. Yamada H, Hirai S, Ikegami S, Kawarada Y, Okuhara E, Nagano H (1985) The fate of DNA originally existing in the zygote nucleus during a chromosomal cleavage of fertilized echinoderm eggs in the presence of aphidicolin: microscopic studies with anti-DNA antibody. J Cell Physiol 124:9–12

    Article  CAS  PubMed  Google Scholar 

  80. Nagano H, Hirai S, Okano K, Ikegami S (1981) Achromosomal cleavage of fertilized starfish eggs in the presence of aphidicolin. Dev Biol 85:409–415

    Article  CAS  PubMed  Google Scholar 

  81. Saiki T, Kyozuka K, Osanai K, Hamaguchi Y (1991) Chromosomal behavior in starfish (Asterina pectinifera) zygotes under the effect of aphidicolin, an inhibitor of DNA polymerase. Exp Cell Res 192:380–388

    Article  CAS  PubMed  Google Scholar 

  82. Wells NJ, Hickson ID (1995) Human topoisomerase II alpha is phosphorylated in a cell-cycle phase-dependent manner by a proline-diected kinase. Eur J Biochem 23:491–497

    Article  Google Scholar 

  83. Clute P, Masui Y (1997) Microtubule dependence of chromosome cycles in Xenopus laevis blastomeres under the influence of a DNA synthesis inhibitor, aphidicolin. Dev Biol 185:1–13

    Article  CAS  PubMed  Google Scholar 

  84. Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275:458–460

    Article  PubMed  Google Scholar 

  85. Droge P, Sogo JM, Stahl H (1985) Inhibition of DNA synthesis by aphidicolin induces supercoiling in simian virus 40 replicative intermediates. EMBO J 4:3241–3246

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54:665–697

    Article  CAS  PubMed  Google Scholar 

  87. Drlica K, Franco A (1988) Inhibitors of DNA topoisomerases. Biochemistry 27:2253–2259

    Article  CAS  PubMed  Google Scholar 

  88. Gupta M, Fujimori A, Pommier Y (1995) Eukaryotic DNA topoisomerases I. Biochem Biophys Acta 1262:1–14

    PubMed  Google Scholar 

  89. Ohta E, Ohta S, Hongo T, Hamaguchi Y, Ando T, Shioda M, Ikegami S (2003) Inhibition of chromosome separation in fertilized starfish eggs by kalihinol F, a topoisomerase I inhibitor obtained from a marine sponge. Biosci Biotechnol Biochem 67:2365–2372

    Article  CAS  PubMed  Google Scholar 

  90. Horowitz MS, Horowits SB (1971) Intracellular degeneration of HeLa and adenovirus type 2 DNA induced by camptothecin. Biochem Biophys Res Commun 45:723–727

    Article  Google Scholar 

  91. Annunziato TA (1989) Inhibitors of topoisomerases I and II arrest DNA replication, but do not prevent nucleosome assembly in vivo. J Cell Sci 93:593–603

    CAS  PubMed  Google Scholar 

  92. Gellert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910

    Article  CAS  PubMed  Google Scholar 

  93. Hsian YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    Google Scholar 

  94. Zhu Q, Pongpech P, DiGate RJ (2001) Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. Proc Natl Acad Sci U S A 98:9766–9771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Usongo V, Nolent F, Sanscartier P, Tanguay C, Broccoli S, Baaklini I, Drlica K, Drolet M (2008) Depletion of RNase H1 activity in Escherichia coli lacking DNA topoisomerase I leads to defects in DNA supercoiling and segregation. Mol Microbiol 69:968–981

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50:917–925

    Article  CAS  PubMed  Google Scholar 

  97. Holm C, Goto T, Wang JC, Botstein D (1985) DNA topoisomerase I is required at the time of mitosis in yeast. Cell 41:553–563

    Article  CAS  PubMed  Google Scholar 

  98. Holm C, Stearns T, Botstein D (1989) DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol 9:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rose D, Thomas W, Holm C (1990) Segregation of recombined chromosomes in meiosis I requires DNA topoisomerase II. Cell 60:1009–1017

    Article  CAS  PubMed  Google Scholar 

  100. Bhar MA, Philp AV, Glover DM, Bellen HJ (1996) Chromatid segregation at anaphase required the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell 87:1103–1114

    Article  Google Scholar 

  101. Wright SJ, Schatten G (1990) Teniposide, a topoisomerase II inhibitor, prevents chromosome condensation and separation but not decondensation in fertilized surf clam (Spisula solidissima) oocytes. Dev Biol 142:224–232

    Article  CAS  PubMed  Google Scholar 

  102. Shamu CE, Murray AW (1992) Sister chromatic separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J Cell Biol 117:921–934

    Article  CAS  PubMed  Google Scholar 

  103. Buchenau P, Saumweber H, Arndt-Jovin DL (1993) Consequences of TOPO II inhibition in early embryo-genesis of Drosophila revealed by in vivo confocal laser scanning micro-scopy. J Cell Biol 104:1175–1185

    CAS  Google Scholar 

  104. Kallio M, Lahdtie J (1996) Fragmentation of centromeric DNA and prevention of homologous chromosome separation in male meiosis in vivo by the topoisomerase II inhibitor etoposide. Mutagenesis 11:435–443

    Article  CAS  PubMed  Google Scholar 

  105. Kallio M, Lähdetie J (1997) Effects of the DNA topoisomerase II inhibitor merbarone in male mouse meiotic divisions in vivo: cell cycle arrest and induction of aneuploidy. Environ Mol Mutagen 29:16–27

    Article  CAS  PubMed  Google Scholar 

  106. Mailhes JB, Marchetti F, Young D, London SN (1996) Numerical and structural chromosome aberrations induced by etoposide (VP 16) during oocyte maturation of mice: transmission to 1-cell zygotes and damage to dictyate oocytes. Mutagenesis 11:357–361

    Article  CAS  PubMed  Google Scholar 

  107. Marchetti F, Bishop JB, Lowe X, Generoso WM, Hozier J, Wyrobek AJ (2001) Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci U S A 98:3952–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tateno H, Kamiguchi Y (2001) Abnormal chromosome migration and chromosome aberrations in mouse oocytes during meiosis II in the presence of topoisomerase II inhibitor ICRF-193. Mutat Res 502:1–9

    Article  Google Scholar 

  109. Charron M, Hancock R (1990) DNA topoisomerase II is required for formation of mitotic chromosomes in Chinese hamster ovary cells: studies using the inhibitor 4-demethylepi-podophyllotoxin9-(4,6-O-thenylidene-β-D-gluco-pyranoside). Biochemistry 29:9531–9537

    Google Scholar 

  110. Downes CDS, Mullinge AM, Johnson RT (1991) Inhibitors of topoiso merase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc Natl Acad Sci U S A 88:8895–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baldi MI, Benedetti P, Mattoccia E, Tocchi-Valentini GP (1980) In vitro catenation and decatenation of DNA and a novel eukaryotic ATP-dependent topoisomerase. Cell 20:461–467

    Article  CAS  PubMed  Google Scholar 

  112. Hsieh T-S (1983) Knotting of the circular duplex DNA by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem 258:8413–8420

    CAS  PubMed  Google Scholar 

  113. Hsieh T-S, Brutlag D (1980) ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings. Cell 27:115–254

    Article  Google Scholar 

  114. Kreuzer KN, Cozzarelli NR (1980) Formation and resolution of DNA catenates by DNA gyrase. Cell 20:245–254

    Article  CAS  PubMed  Google Scholar 

  115. Liu LF, Davis JI, Calendar R (1981) Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res 9:3979–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sundin O, Varshavsky A (1980) Terminal stages of SV40 replication proceed via multiply intercatenated dimers. Cell 21:103–114

    Article  CAS  PubMed  Google Scholar 

  117. Sundin O, Varshavsky A (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stage of SV40 DNA replication. Cell 25:659–669

    Article  CAS  PubMed  Google Scholar 

  118. DiNardo S, Voelkel K, Sternglanz R (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A 81:2616–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weaver DT, Fields-Berry SC, DePamphilis ML (1985) The termination region for SV40 DNA replication directs the mode of segregation for the two sibling molecules. Cell 41:565–575

    Article  CAS  PubMed  Google Scholar 

  120. Maeshima K, Laemmli UK (2003) A two-step scaffolding for mitotic chromosome assembly. Dev Cell 4:467–480

    Article  CAS  PubMed  Google Scholar 

  121. Xu Y-X, Manley JL (2007) New insights into mitotic chromosome condensation. A role for the prolyl isomerase Pin 1. Cell Cycle 6:2896–2901

    Article  CAS  PubMed  Google Scholar 

  122. Kelly TJ, Brown GW (2000) Regulation of chromosome replication. Annu Rev Biochem 69:829–880

    Article  CAS  PubMed  Google Scholar 

  123. Hirano T (2005) SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci 36:507–514

    Article  CAS  Google Scholar 

  124. Yanagida M (2005) Basic mechanism of eukaryotic chromosome segregation. Philos Trans R Soc Lond B Biol Sci 36:609–1615

    Article  CAS  Google Scholar 

  125. Iwamatsu T (1978) Studies on oocyte maturation of the medaka, Oryzias latipes. VI. Relationship between the circadian cycle of oocyte maturation and activity of the pituitary gland. J Exp Zool 206:355–363

    Article  CAS  PubMed  Google Scholar 

  126. Iwamatsu T, Onitake K, Nakashima S (1992) Polarity of responsiveness in sperm and artificial stimuli in medaka eggs. J Exp Zool 264:351–358

    Article  Google Scholar 

  127. Iwamatsu T, Fluck RA, Mori T (1993) Mechanical dechorionation of fertilized eggs for experimental embryology in the medaka. Zoolog Sci 10:945–951

    Google Scholar 

  128. Nomura A, Yoneda M, Tanaka S (1993) DNA replication in fertilized eggs of the starfish Asterina pectinifera. Dev Biol 159:288–297

    Article  PubMed  Google Scholar 

  129. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophjage T4. Nature 277:680–685

    Article  Google Scholar 

  130. Yamashita M, Yoshikuni M, Hirai T, Fukuda S, Nagahama Y (1991) A monoclonal antibody against the PSTAIR sequence of p34cdc2, catalytic subunit of maturation-promoting factor and key regulator of the cell cycle. Dev Growth Differ 33:617–624

    Article  CAS  Google Scholar 

  131. Yamashita M, Jiang J, Onozato H, Nakanishi T, Nagahama Y (1992) M phase-specific histone H1 kinase in fish oocytes: purification, components and biochemical properties. Eur J Biochem 205:537–543

    Article  CAS  PubMed  Google Scholar 

  132. Mehlman LM, Kline D (1994) Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol triphosphate is enhanced after meiotic maturation. Biol Reprod 51:1088–1198

    Article  Google Scholar 

  133. Iwamatsu T (1965) On fertilizability of preovulatory eggs of the medaka, Oryzias latipes. Embryologia 8:327–336

    Article  Google Scholar 

  134. Iwamatsu T (1997) Abbreviation of the second meiotic division by precocious fertilization in fish oocytes. J Exp Zool 277:450–459

    Article  Google Scholar 

  135. Eppig JJ, Schultz MR, O’Brien M, Chenel F (1994) Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol 164:1–9

    Article  CAS  PubMed  Google Scholar 

  136. Iwamatsu T (2000) Fertilization in fishes. In: Tarin JJ, Cana A (eds) Fertilization in protozoa and metazoan animals–Cellular and molecular aspects. Springer, Berlin, pp 89–145

    Chapter  Google Scholar 

  137. Kuraishi R, Osanai K (1988) Behavior of sperm nuclei in meiotic eggs of the oyster, Crassostrea gigas. Bull Mar Biol Stn Asamushi 18:57–65

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the collaborators Drs. T. Haraguchi, S. Ikegami, T. Kishimoto, H. Kobayashi, S. Oda, H. Ohta, Y. Shibata, and M. Yamashita for their help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Iwamatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Iwamatsu, T. (2017). Chromosome Formation During Fertilization in Eggs of the Teleost Oryzias latipes . In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics