Skip to main content

Intracellular Flow Cytometry Improvements in Clinical Studies

  • Protocol
  • First Online:
Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

Flow cytometry has become a basic of biological research and clinical diagnostics, and its application has been crucial to numerous advances in immunology and cell biology. However, several issues remain when considering intracellular stainings, especially in the context of a daily routine use and in multicenter clinical research protocols including large cohorts of patients. The requirements for multiple protocol steps are not only time-consuming but also frequently associated with high cell loss and nonspecific binding or reduced fluorescence. These drawbacks make standardized intracellular flow cytometry use in multicenter studies struggling. As a consequence, intracellular flow cytometry has mostly remained a tool for experimental and clinical research. In the current chapter, we will complete flow cytometry protocols described in the previous edition by presenting novel intracellular protocols usable in clinic. These present with many advantages including shorter time-to-results, one-step whole blood procedures, lyse-no-wash-no-centrifuge protocols, improved staining quality, and lyophilized coated reagents in ready-to-use tubes. This opens novel perspectives for standardization and feasibility in clinical studies, for drug efficacy monitoring and for patients’ stratification within a context of personalized medicine. Here, we present illustrative examples taken from septic patients’ immunomonitoring. We consider the evaluation of myeloperoxidase and lactoferrin expressions in neutrophils, FOXP3 lymphocyte expression, and STAT5 phosphorylation in lymphocyte subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol 12:191–200

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinson JP, Roederer M (2015) History of science. Flow cytometry strikes gold. Science 350:739–740

    Article  CAS  PubMed  Google Scholar 

  3. Perez OD, Mitchell D, Campos R, Gao GJ, Li L, Nolan GP (2005) Multiparameter analysis of intracellular phosphoepitopes in immunophenotyped cell populations by flow cytometry. Curr Protoc Cytom Chapter 6:Unit 6 20

    Google Scholar 

  4. Venet F, Guignant C, Monneret G (2011) Flow cytometry developments and perspectives in clinical studies: examples in ICU patients. Methods Mol Biol 761:261–275

    Article  CAS  PubMed  Google Scholar 

  5. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, Vincent JL, Townsend S, Lemeshow S, Dellinger RP (2012) Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis 12:919–924

    Article  PubMed  Google Scholar 

  6. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13:260–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venet F, Lukaszewicz AC, Payen D, Hotchkiss R, Monneret G (2013) Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol 25:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monneret G, Venet F, Pachot A, Lepape A (2008) Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. Mol Med 14:64–78

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, Weber-Carstens S, Hasper D, Keh D, Zuckermann H, Reinke P, Volk HD (2009) Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 180:640–648

    Article  CAS  PubMed  Google Scholar 

  11. Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11:330–342

    Article  CAS  PubMed  Google Scholar 

  12. Venet F, Foray AP, Villars-Mechin A, Malcus C, Poitevin-Later F, Lepape A, Monneret G (2012) IL-7 restores lymphocyte functions in septic patients. J Immunol 189:5073–5081

    Article  CAS  PubMed  Google Scholar 

  13. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    Article  CAS  PubMed  Google Scholar 

  14. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122:327–336

    Article  CAS  PubMed  Google Scholar 

  15. Guerin E, Orabona M, Raquil MA, Giraudeau B, Bellier R, Gibot S, Bene MC, Lacombe F, Droin N, Solary E, Vignon P, Feuillard J, Francois B (2014) Circulating immature granulocytes with T-cell killing functions predict sepsis deterioration*. Crit Care Med 42:2007–2018

    Article  CAS  PubMed  Google Scholar 

  16. Demaret J, Venet F, Friggeri A, Cazalis MA, Plassais J, Jallades L, Malcus C, Poitevin-Later F, Textoris J, Lepape A, Monneret G (2015) Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J Leukoc Biol 98(6):1081–1090

    Article  CAS  PubMed  Google Scholar 

  17. Turin CG, Zea-Vera A, Pezo A, Cruz K, Zegarra J, Bellomo S, Cam L, Llanos R, Castaneda A, Tucto L, Ochoa TJ (2014) Lactoferrin for prevention of neonatal sepsis. Biometals 27:1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  CAS  PubMed  Google Scholar 

  19. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  20. Parker H, Albrett AM, Kettle AJ, Winterbourn CC (2013) Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol 91:369–376

    Article  Google Scholar 

  21. Baecher-Allan C, Hafler DA (2006) Human regulatory T cells and their role in autoimmune disease. Immunol Rev 212:203–216

    Article  CAS  PubMed  Google Scholar 

  22. Wood KJ, Bushell A, Hester J (2012) Regulatory immune cells in transplantation. Nat Rev Immunol 12:417–430

    Article  CAS  PubMed  Google Scholar 

  23. Monneret G, Venet F (2010) Additional bad news from regulatory T cells in sepsis. Crit Care 14:453

    Article  PubMed  PubMed Central  Google Scholar 

  24. Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, Amani D (2012) Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 77:306–311

    Article  PubMed  Google Scholar 

  25. Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, Koelle DM, McElrath MJ, Horton H (2011) Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nat Med 17:989–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fukaya T, Takagi H, Sato Y, Sato K, Eizumi K, Taya H, Shin T, Chen L, Dong C, Azuma M, Yagita H, Malissen B (2010) Crucial roles of B7-H1 and B7-DC expressed on mesenteric lymph node dendritic cells in the generation of antigen-specific CD4+Foxp3+ regulatory T cells in the establishment of oral tolerance. Blood 116:2266–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Venet F, Chung CS, Kherouf H, Geeraert A, Malcus C, Poitevin F, Bohe J, Lepape A, Ayala A, Monneret G (2009) Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35:678–686

    Article  PubMed  Google Scholar 

  28. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  29. Saison J, Demaret J, Venet F, Chidiac C, Malcus C, Poitevin-Later F, Tardy JC, Ferry T, Monneret G (2013) CD4+CD25+CD127-assessment as a surrogate phenotype for FOXP3+ regulatory T cells in HIV-1 infected viremic and aviremic subjects. Cytometry B Clin Cytom 84:50–54

    Google Scholar 

  30. Demaret J, Saison J, Venet F, Malcus C, Poitevin-Later F, Lepape A, Ferry T, Monneret G (2013) Assessment of a novel flow cytometry technique of one-step intracellular staining: example of FOXP3 in clinical samples. Cytometry B Clin Cytom 84:187–193

    Article  PubMed  Google Scholar 

  31. Kretzschmar AK, Dinger MC, Henze C, Brocke-Heidrich K, Horn F (2004) Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem J 377:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cella N, Groner B, Hynes NE (1998) Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol Cell Biol 18:1783–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez OD, Nolan GP (2006) Phospho-proteomic immune analysis by flow cytometry: from mechanism to translational medicine at the single-cell level. Immunol Rev 210:208–228

    Article  CAS  PubMed  Google Scholar 

  34. Dupont G, Demaret J, Venet F, Malergue F, Malcus C, Poitevin-Later F, Morel J, Monneret G (2014) Comparative dose-responses of recombinant human IL-2 and IL-7 on STAT5 phosphorylation in CD4+FOXP3- cells versus regulatory T cells: a whole blood perspective. Cytokine 69:146–149

    Article  CAS  PubMed  Google Scholar 

  35. Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atkins MB (2002) Interleukin-2: clinical applications. Semin Oncol 29:12–17

    Article  CAS  PubMed  Google Scholar 

  37. Demaret J, Dupont G, Venet F, Friggeri A, Lepape A, Rimmele T, Morel J, Monneret G (2015) STAT5 phosphorylation in T cell subsets from septic patients in response to recombinant human interleukin-7: a pilot study. J Leukoc Biol 97:791–796

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Monneret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Demaret, J., Gossez, M., Venet, F., Monneret, G. (2017). Intracellular Flow Cytometry Improvements in Clinical Studies. In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics