Skip to main content

Detection of Cohesin SUMOylation In Vivo

  • Protocol
  • First Online:
Cohesin and Condensin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1515))

Abstract

Cohesin is a protein complex with key roles in chromosome biology, from chromatid segregation to DNA repair. Cohesin function is regulated by several posttranslational modifications, including phosphorylation, acetylation, ubiquitylation, and SUMOylation. Recent studies have shown that cohesin SUMOylation is essential for sister chromatid cohesion during normal cell cycle and in response to DNA damage. Posttranslational modification by the small ubiquitin-like modifier (SUMO) is a field in expansion, however, detecting SUMOylation can be challenging because the amount of modified substrates are usually low and de-conjugation during sample preparation often occurs. In this chapter we describe a method that can be adapted to different model organisms, and substrates to detect SUMOylation. We focus on cohesin and show that SUMOylation indeed occurs in most of the subunits of budding yeast cohesin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–65

    Article  CAS  PubMed  Google Scholar 

  2. Onn I et al (2008) Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Dev Biol 24:105–29

    Article  CAS  Google Scholar 

  3. Uhlmann F, Nasmyth K (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8:1095–1101

    Article  CAS  PubMed  Google Scholar 

  4. Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42

    Article  CAS  PubMed  Google Scholar 

  5. Ström L et al (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–15

    Article  PubMed  Google Scholar 

  6. Ünal E et al (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    Article  PubMed  Google Scholar 

  7. Ünal E, Heidinger-Pauli JM, Koshland D (2007) DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317:245–8

    Article  PubMed  Google Scholar 

  8. Cortés-Ledesma F, Aguilera A (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–26

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rudra S, Skibbens RV (2013) Cohesin codes—interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Almedawar S et al (2012) A SUMO-dependent step during establishment of sister chromatid cohesion. Curr Biol 22:1576–1581

    Article  CAS  PubMed  Google Scholar 

  11. McAleenan, A., et al., SUMOylation of the α-Kleisin Subunit of Cohesin Is Required for DNA Damage-Induced Cohesion. Curr Biol 22(17):1564-75.

    Google Scholar 

  12. Wu N et al (2012) Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev 26:1473–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephan AK et al (2011) Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol Cell Biol 31:1369–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Behlke-Steinert S et al (2009) SMC5 and MMS21 are required for chromosome cohesion and mitotic progression. Cell Cycle 8:2211–2218

    Article  CAS  PubMed  Google Scholar 

  16. Stead K et al (2003) Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol 163:729–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Denison C et al (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4:246–254

    Article  CAS  PubMed  Google Scholar 

  18. Hannich JT et al (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110

    Article  CAS  PubMed  Google Scholar 

  19. Panse VG et al (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351

    Article  CAS  PubMed  Google Scholar 

  20. Rosas-Acosta G et al (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4:56–72

    Article  CAS  PubMed  Google Scholar 

  21. Wohlschlegel JA et al (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668

    Article  CAS  PubMed  Google Scholar 

  22. Wohlschlegel JA et al (2006) Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies. J Proteome Res 5:761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao Y et al (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279:20999–21002

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, W., J.J. Ryan, and H. Zhou, Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem., 2004. 279: p. 32262-32268.

    Google Scholar 

  25. Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 13:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sarangi P, Zhao X (2015) SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 40:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sacher M, Pfander B, Jentsch S (2005) Identification of SUMO-protein conjugates. Methods Enzymol 399:392–404

    Article  CAS  PubMed  Google Scholar 

  28. Tatham MH et al (2009) Detection of protein SUMOylation in vivo. Nat Protoc 4:1363–1371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Aragón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bermúdez-López, M., Aragón, L. (2017). Detection of Cohesin SUMOylation In Vivo. In: Yokomori, K., Shirahige, K. (eds) Cohesin and Condensin. Methods in Molecular Biology, vol 1515. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6545-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6545-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6543-4

  • Online ISBN: 978-1-4939-6545-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics