Skip to main content

Methods to Study the Atypical Roles of DNA Repair and SMC Proteins in Gene Silencing

  • Protocol
  • First Online:
Cohesin and Condensin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1515))

Abstract

Silenced heterochromatin influences all nuclear processes including chromosome structure, nuclear organization, transcription, replication, and repair. Proteins that mediate silencing affect all of these nuclear processes. Similarly proteins involved in replication, repair, and chromosome structure play a role in the formation and maintenance of silenced heterochromatin. In this chapter we describe a handful of simple tools and methods that can be used to study the atypical role of proteins in gene silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loo S, Rine J (1995) Silencing and heritable domains of gene expression. Annu Rev Cell Dev Biol 11:519–548

    Article  CAS  PubMed  Google Scholar 

  2. Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516

    Article  CAS  PubMed  Google Scholar 

  3. Grunstein M (1998) Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93(3):325–328

    Article  CAS  PubMed  Google Scholar 

  4. Rusche LN, Kirchmaier AL, Rine J (2002) Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13(7):2207–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo K, Vega-Palas MA, Grunstein M (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16(12):1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laroche T et al (1998) Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 8(11):653–656

    Article  CAS  PubMed  Google Scholar 

  7. Evans SK et al (1998) Telomerase, Ku, and telomeric silencing in Saccharomyces cerevisiae. Chromosoma 107(6-7):352–358

    Article  CAS  PubMed  Google Scholar 

  8. Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17(6):1819–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imai S et al (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800

    Article  CAS  PubMed  Google Scholar 

  10. Moazed D et al (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci U S A 94(6):2186–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghidelli S et al (2001) Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities. EMBO J 20(16):4522–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donze D et al (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13(6):698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fourel G et al (2001) An activation-independent role of transcription factors in insulator function. EMBO Rep 2(2):124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donze D, Kamakaka RT (2001) RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20(3):520–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valenzuela L, Dhillon N, Kamakaka RT (2009) Transcription independent insulation at TFIIIC-dependent insulators. Genetics 183(1):131–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oki M, Kamakaka RT (2005) Barrier function at HMR. Mol Cell 19(5):707–716

    Article  CAS  PubMed  Google Scholar 

  17. Dhillon N et al (2009) DNA polymerase epsilon, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator. EMBO J 28(17):2583–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin Q et al (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141(1):21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gotta M et al (1996) The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134(6):1349–1363

    Article  CAS  PubMed  Google Scholar 

  20. Schober H et al (2008) Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res 18(2):261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Therizols P et al (2010) Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc Natl Acad Sci U S A 107(5):2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tjong H et al (2012) Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res 22(7):1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11(2):241–254

    Article  CAS  PubMed  Google Scholar 

  24. Smith JS et al (1998) Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149:1205–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Straight AF et al (1999) Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97(2):245–256

    Article  CAS  PubMed  Google Scholar 

  26. Gotta M et al (1997) Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J 16(11):3243–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shou W et al (2001) Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell 8(1):45–55

    Article  CAS  PubMed  Google Scholar 

  28. Gotta M, Gasser SM (1996) Nuclear organization and transcriptional silencing in yeast. Experientia 52(12):1136–1147

    Article  CAS  PubMed  Google Scholar 

  29. Palladino F et al (1993) The positioning of yeast telomeres depends on SIR3, SIR4, and the integrity of the nuclear membrane. Cold Spring Harb Symp Quant Biol 58:733–746

    Article  CAS  PubMed  Google Scholar 

  30. Taddei A et al (2009) The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 19(4):611–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thompson JS, Johnson LM, Grunstein M (1994) Specific repression of the yeast silent mating locus HMR by an adjacent telomere. Mol Cell Biol 14(1):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gartenberg MR et al (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119(7):955–967

    Article  CAS  PubMed  Google Scholar 

  33. Andrulis ED et al (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394(6693):592–595

    Article  CAS  PubMed  Google Scholar 

  34. Maillet L et al (1996) Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev 10(14):1796–1811

    Article  CAS  PubMed  Google Scholar 

  35. Gasser SM et al (2004) The function of telomere clustering in yeast: the Circe effect. Cold Spring Harb Symp Quant Biol 69:327–337

    Article  CAS  PubMed  Google Scholar 

  36. Mekhail K et al (2008) Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456(7222):667–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schober H et al (2009) Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23(8):928–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruault M et al (2011) Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast. J Cell Biol 192(3):417–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taddei A, Gasser SM (2004) Multiple pathways for telomere tethering: functional implications of subnuclear position for heterochromatin formation. Biochim Biophys Acta 1677(1-3):120–128

    Article  CAS  PubMed  Google Scholar 

  40. Andrulis ED et al (2002) Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol Cell Biol 22(23):8292–8301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taddei A et al (2004) Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23(6):1301–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laroche T et al (2000) The dynamics of yeast telomeres and silencing proteins through the cell cycle. J Struct Biol 129(2-3):159–174

    Article  CAS  PubMed  Google Scholar 

  43. Roy R et al (2004) Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. J Biol Chem 279(1):86–94

    Article  CAS  PubMed  Google Scholar 

  44. Vandre CL, Kamakaka RT, Rivier DH (2008) The DNA end-binding protein Ku regulates silencing at the internal HML and HMR loci in Saccharomyces cerevisiae. Genetics 180(3):1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patterson EE, Fox CA (2008) The Ku complex in silencing the cryptic mating-type loci of Saccharomyces cerevisiae. Genetics 180(2):771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bystricky K et al (2009) Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol Cell Biol 29(3):835–848

    Article  CAS  PubMed  Google Scholar 

  47. Ruben GJ et al (2011) Nucleoporin mediated nuclear positioning and silencing of HMR. PLoS One 6(7), e21923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kirkland JG, Kamakaka RT (2013) Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. J Cell Biol 201(6):809–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bupp JM et al (2007) Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol 179(5):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Therizols P et al (2006) Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J Cell Biol 172(2):189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galy V et al (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403:108–112

    Article  CAS  PubMed  Google Scholar 

  52. Hediger F, Dubrana K, Gasser SM (2002) Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J Struct Biol 140(1):79–91

    Article  CAS  PubMed  Google Scholar 

  53. Teixeira MT et al (1997) Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J 16(16):5086–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nagai S et al (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322(5901):597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bose T, Gerton JL (2010) Cohesinopathies, gene expression, and chromatin organization. J Cell Biol 189(2):201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Piccoli G, Torres-Rosell J, Aragon L (2009) The unnamed complex: what do we know about Smc5-Smc6? Chromosome Res 17(2):251–263

    Article  PubMed  CAS  Google Scholar 

  57. Hudson DF, Marshall KM, Earnshaw WC (2009) Condensin: architect of mitotic chromosomes. Chromosome Res 17(2):131–144

    Article  CAS  PubMed  Google Scholar 

  58. Hirano T (2012) Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26(15):1659–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lopez-Serra L et al (2014) The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet 46(10):1147–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Strunnikov AV, Larionov VL, Koshland D (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol 123(6 Pt 2):1635–1648

    Article  CAS  PubMed  Google Scholar 

  61. Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91(1):47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91(1):35–45

    Article  CAS  PubMed  Google Scholar 

  63. Toth A et al (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13(3):320–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cortes-Ledesma F et al (2007) SMC proteins, new players in the maintenance of genomic stability. Cell Cycle 6(8):914–918

    Article  CAS  PubMed  Google Scholar 

  65. Lindroos HB et al (2006) Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 22(6):755–767

    Article  CAS  PubMed  Google Scholar 

  66. Laloraya S, Guacci V, Koshland D (2000) Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 151(5):1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Glynn EF et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2(9), E259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lengronne A et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999):573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98(2):249–259

    Article  CAS  PubMed  Google Scholar 

  70. Tanaka T et al (1999) Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98(6):847–858

    Article  CAS  PubMed  Google Scholar 

  71. Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149(4):811–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stephens AD et al (2011) Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 193(7):1167–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Renshaw MJ et al (2010) Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev Cell 19(2):232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Snider CE et al (2014) Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. J Cell Biol 207(2):189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. D'Ambrosio C et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215–2227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ciosk R et al (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5(2):243–254

    Article  CAS  PubMed  Google Scholar 

  77. Hakimi MA et al (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418(6901):994–998

    Article  CAS  PubMed  Google Scholar 

  78. Baetz KK et al (2004) The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol 24(3):1232–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang J, Laurent BC (2004) A role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle 3(8):973–975

    CAS  PubMed  Google Scholar 

  80. Kogut I et al (2009) The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev 23(19):2345–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tittel-Elmer M et al (2009) The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J 28(8):1142–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guillou E et al (2010) Cohesin organizes chromatin loops at DNA replication factories. Genes Dev 24(24):2812–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Uhlmann F, Nasmyth K (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8(20): 1095–1101

    Article  CAS  PubMed  Google Scholar 

  84. Lengronne A et al (2006) Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23(6):787–799

    Article  CAS  PubMed  Google Scholar 

  85. Ivanov D et al (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12(4):323–328

    Article  CAS  PubMed  Google Scholar 

  86. Brands A, Skibbens RV (2005) Ctf7p/Eco1p exhibits acetyltransferase activity—but does it matter? Curr Biol 15(2):R50–R51

    Article  CAS  PubMed  Google Scholar 

  87. Skibbens RV et al (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13(3):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suter B et al (2004) The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae. Genetics 167(2):579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ball AR Jr, Yokomori K Jr (2008) Damage-induced reactivation of cohesin in postreplicative DNA repair. Bioessays 30(1):5–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bausch C et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27(24):8522–8532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chang CR et al (2005) Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19(24):3031–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dubey RN, Gartenberg MR (2007) A tDNA establishes cohesion of a neighboring silent chromatin domain. Genes Dev 21(17):2150–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ocampo-Hafalla MT, Uhlmann F (2011) Cohesin loading and sliding. J Cell Sci 124(Pt 5):685–691

    Article  CAS  PubMed  Google Scholar 

  94. Chen M, Gartenberg MR (2014) Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes Dev 28(9):959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu Y, Zakian VA (2011) The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro. Proc Natl Acad Sci U S A 108(51):20362–20369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang J, Moazed D (2003) Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17(17):2162–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ide S et al (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327(5966):693–696

    Article  CAS  PubMed  Google Scholar 

  98. Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152(2):577–593

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Parelho V et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3):422–433

    Article  CAS  PubMed  Google Scholar 

  100. Rubio ED et al (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 105(24):8309–8314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wendt KS et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801

    Article  CAS  PubMed  Google Scholar 

  102. Miele A, Bystricky K, Dekker J (2009) Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet 5(5), e1000478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Thompson M et al (2003) Nucleolar clustering of dispersed tRNA genes. Science 302(5649):1399–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Duan Z et al (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Haeusler RA et al (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22(16):2204–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hull MW et al (1994) tRNA genes as transcriptional repressor elements. Mol Cell Biol 14(2):1266–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Aguilera A, Gomez-Gonzalez B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9(3):204–217

    Article  CAS  PubMed  Google Scholar 

  108. Ataian Y, Krebs JE (2006) Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol 84(4):490–504

    Article  CAS  PubMed  Google Scholar 

  109. Aylon Y, Kupiec M (2004) DSB repair: the yeast paradigm. DNA Repair (Amst) 3(8-9):797–815

    Article  CAS  Google Scholar 

  110. Cobb JA, Shimada K, Gasser SM (2004) Redundancy, insult-specific sensors and thresholds: unlocking the S-phase checkpoint response. Curr Opin Genet Dev 14(3):292–300

    Article  CAS  PubMed  Google Scholar 

  111. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11(3):208–219

    Article  CAS  PubMed  Google Scholar 

  112. Lambert S, Carr AM (2005) Checkpoint responses to replication fork barriers. Biochimie 87(7):591–602

    Article  CAS  PubMed  Google Scholar 

  113. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147

    Article  CAS  PubMed  Google Scholar 

  114. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  115. Fisher TS, Zakian VA (2005) Ku: a multifunctional protein involved in telomere maintenance. DNA Repair (Amst) 4(11):1215–1226

    Article  CAS  Google Scholar 

  116. Stracker TH, Petrini JH (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12(2):90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lisby M, Rothstein R (2004) DNA damage checkpoint and repair centers. Curr Opin Cell Biol 16(3):328–334

    Article  CAS  PubMed  Google Scholar 

  118. Lisby M, Rothstein R (2009) Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 8(9):1068–1076

    Article  CAS  Google Scholar 

  119. Dion V et al (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14(5):502–509

    Article  CAS  PubMed  Google Scholar 

  120. Mine-Hattab J, Rothstein R (2012) Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14(5):510–517

    Article  CAS  PubMed  Google Scholar 

  121. Agmon N et al (2013) Effect of nuclear architecture on the efficiency of double-strand break repair. Nat Cell Biol 15(6):694–699

    Article  CAS  PubMed  Google Scholar 

  122. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mortensen UH, Lisby M, Rothstein R (2009) Rad52. Curr Biol 19(16):R676–R677

    Article  CAS  PubMed  Google Scholar 

  124. Kinoshita E et al (2009) RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function? Chromosome Res 17(2):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Heyer WD et al (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34(15):4115–4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Flott S et al (2007) Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single-strand annealing mode of DNA repair in budding yeast. Mol Cell Biol 27(18):6433–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Keogh MC et al (2006) A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439(7075):497–501

    Article  CAS  PubMed  Google Scholar 

  129. Wu L (2008) Wrestling off RAD51: a novel role for RecQ helicases. Bioessays 30(4):291–295

    Article  PubMed  CAS  Google Scholar 

  130. Sugawara N, Wang X, Haber JE (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12(1):209–219

    Article  CAS  PubMed  Google Scholar 

  131. Allard S, Masson JY, Cote J (2004) Chromatin remodeling and the maintenance of genome integrity. Biochim Biophys Acta 1677(1-3):158–164

    Article  CAS  PubMed  Google Scholar 

  132. Wood AJ, Severson AF, Meyer BJ (2010) Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 11(6):391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Unal E et al (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991–1002

    Article  PubMed  Google Scholar 

  134. Lin YY et al (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22(15):2062–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Strom L et al (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16(6):1003–1015

    Article  PubMed  Google Scholar 

  136. Liefshitz B, Kupiec M (2011) Roles of RSC, Rad59, and cohesin in double-strand break repair. Mol Cell Biol 31(19):3921–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tittel-Elmer M et al (2012) Cohesin association to replication sites depends on rad50 and promotes fork restart. Mol Cell 48(1):98–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272(5264):1030–1033

    Article  CAS  PubMed  Google Scholar 

  139. Azvolinsky A et al (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34(6):722–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. d’Adda di Fagagna F, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18(15):1781–1799

    Article  PubMed  Google Scholar 

  141. Deem AK, Li X, Tyler JK (2012) Epigenetic regulation of genomic integrity. Chromosoma 121(2):131–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tsukamoto Y, Taggart AK, Zakian VA (2001) The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11(17):1328–1335

    Article  CAS  PubMed  Google Scholar 

  143. Hirano Y, Fukunaga K, Sugimoto K (2009) Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol Cell 33(3):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ritchie KB, Petes TD (2000) The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155(1):475–479

    CAS  PubMed  PubMed Central  Google Scholar 

  145. DuBois ML et al (2002) A quantitative assay for telomere protection in Saccharomyces cerevisiae. Genetics 161(3):995–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Takata H et al (2004) Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell 14(4):515–522

    Article  CAS  PubMed  Google Scholar 

  147. Hirano Y, Sugimoto K (2007) Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Mol Biol Cell 18(6):2026–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sabourin M, Tuzon CT, Zakian VA (2007) Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol Cell 27(4):550–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Teo SH, Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J 16(15):4788–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kirkland J et al (2015) Heterochromatin formation via recruitment of DNA repair proteins. Mol Biol Cell 26(7):1395–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Martin SG et al (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97(5):621–633

    Article  CAS  PubMed  Google Scholar 

  152. Mills KD, Sinclair DA, Guarente L (1999) MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97(5):609–620

    Article  CAS  PubMed  Google Scholar 

  153. McAinsh AD et al (1999) DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol 9(17):963–966

    Article  CAS  PubMed  Google Scholar 

  154. Tamburini BA, Tyler JK (2005) Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25(12):4903–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Morrison AJ et al (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119(6):767–775

    Article  CAS  PubMed  Google Scholar 

  156. van Attikum H et al (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119(6):777–788

    Article  PubMed  Google Scholar 

  157. Jazayeri A, McAinsh AD, Jackson SP (2004) Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci U S A 101(6):1644–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shroff R et al (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14(19):1703–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Oza P et al (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23(8):912–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bermejo R, Kumar A, Foiani M (2012) Preserving the genome by regulating chromatin association with the nuclear envelope. Trends Cell Biol 22(9):465–473

    Article  CAS  PubMed  Google Scholar 

  161. Mekhail K, Moazed D (2011) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11(5):317–328

    Article  CAS  Google Scholar 

  162. Mine-Hattab J, Rothstein R (2013) DNA in motion during double-strand break repair. Trends Cell Biol 23(11):529–536

    Article  CAS  PubMed  Google Scholar 

  163. Sinha M et al (2009) Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138(6):1109–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bennett CB et al (2001) SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol Cell Biol 21(16):5359–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. van Leeuwen F, Gottschling DE (2002) Assays for gene silencing in yeast. Methods Enzymol 350:165–186

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohinton T. Kamakaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peterson, M.R., Hamdani, O., Kamakaka, R.T. (2017). Methods to Study the Atypical Roles of DNA Repair and SMC Proteins in Gene Silencing. In: Yokomori, K., Shirahige, K. (eds) Cohesin and Condensin. Methods in Molecular Biology, vol 1515. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6545-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6545-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6543-4

  • Online ISBN: 978-1-4939-6545-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics