Skip to main content

Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes

  • Protocol
  • First Online:
Book cover Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1504))

Abstract

The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu G, Lin Y (2006) Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 8(2):251–256. doi:10.1016/j.elecom.2005.11.015

    Article  CAS  Google Scholar 

  2. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors (Basel) 12(5):5996–6022. doi:10.3390/s120505996

    Article  Google Scholar 

  3. Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1(38):4878. doi:10.1039/c3tb20881h

    Article  CAS  Google Scholar 

  4. Harper A, Anderson MR (2010) Electrochemical glucose sensors—developments using electrostatic assembly and carbon nanotubes for biosensor construction. Sensors (Basel) 10(9):8248–8274. doi:10.3390/s100908248

    Article  CAS  Google Scholar 

  5. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196. doi:10.1039/c3cs35528d

    Article  CAS  PubMed  Google Scholar 

  6. David M, Barsan MM, Florescu M, Brett CMA (2015) Acidic and basic functionalized carbon nanomaterials as electrical bridges in enzyme loaded chitosan/poly(styree sulfonate) self-assembled layer-by-layer glucose biosensors. Electroanalysis 27:2139–2149

    Article  CAS  Google Scholar 

  7. Mano N, Edembe L (2013) Bilirubin oxidases in bioelectrochemistry: features and recent findings. Biosens Bioelectron 50:478–485. doi:10.1016/j.bios.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  8. Calvo EJ, Etcheniqe R, Danilowicz C, Diaz L (1996) Electrical communication between electrodes and enzymes mediated by redox electrodes. Anal Chem 68(23):4186–4193

    Article  CAS  PubMed  Google Scholar 

  9. Godet C, Boujtuta M, El Murr N (1999) Direct electron transfer involving a large protein: glucose oxidase. N J Chem 23:795–797

    Article  CAS  Google Scholar 

  10. Zhang W, Li G (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20:603–609

    Article  CAS  PubMed  Google Scholar 

  11. Calabrese Barton S, Callaway J, Atanassov PB (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  Google Scholar 

  12. Fu Y, Zou C, Xie Q, Xu X, Chen C, Deng W, Yao S (2009) Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension. J Phys Chem B 113(5):1332–1340

    Article  CAS  PubMed  Google Scholar 

  13. Mugweru A, Shen Z (2010) Electrochemistry of protein and redox polymers trapped in polyethylene glycol diacrylate gel. J Undergraduate Res 9(1):1

    CAS  Google Scholar 

  14. Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965

    Article  CAS  Google Scholar 

  15. Guiseppi-Elie A, Lei CH, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5):559–564

    Article  CAS  Google Scholar 

  16. Wu B, Hou S, Miao Z, Zhang C, Ji Y (2015) Layer-by-layer self-assembling gold nanorods and glucose oxidase onto carbon nanotubes functionalized sol-gel matrix for an amperometric glucose biosensor. Nanomaterials 5(3):1544–1555. doi:10.3390/nano5031544

    Article  CAS  Google Scholar 

  17. Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86(1):752–757. doi:10.1021/ac403250w

    Article  CAS  PubMed  Google Scholar 

  18. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR (2010) High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Chem Commun 46(33):6045–6047. doi:10.1039/C0CC00911C

    Article  CAS  Google Scholar 

  19. Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1):38–46. doi:10.1002/elan.200403116

    Article  CAS  Google Scholar 

  20. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14. doi:10.1002/elan.200403113

    Article  CAS  Google Scholar 

  21. Milton RD, Giroud F, Thumser AE, Minteer SD, Slade RC (2013) Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Phys Chem Chem Phys 15(44):19371–19379

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice H. Suroviec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suroviec, A.H. (2017). Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 1504. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6499-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6499-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6497-0

  • Online ISBN: 978-1-4939-6499-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics