Skip to main content

Introduction to the Field of Enzyme Immobilization and Stabilization

  • Protocol
  • First Online:
Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1504))

Abstract

Enzyme stabilization is important for many biomedical or industrial application of enzymes (i.e., cell-free biotransformations and biosensors). In many applications, the goal is to provide extended active lifetime at normal environmental conditions with traditional substrates at low concentrations in buffered solutions. However, as enzymes are used for more and more applications, there is a desire to use them in extreme environmental conditions (i.e., high temperatures), in high substrate concentration or high ionic strength, and in nontraditional solvent systems. This chapter introduces the topic enzyme stabilization and the methods used for enzyme stabilization including enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hecky J, Muller KM (2005) Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase. Biochemistry 44:12640–12654

    Article  CAS  PubMed  Google Scholar 

  2. O'Fagain C (2003) Enzyme stabilization-recent experimental progress. Enzym Microb Technol 33:137–149

    Article  Google Scholar 

  3. Liuu JH, Tsai FF, Liu JW, Cheng KJ, Cheng CL (2001) The catalytic domain of a Piromyces rhizinflata cellulase expressed in E. coli was stabilized by the linker peptide of the enzyme. Enzym Microb Technol 28:582–589

    Article  Google Scholar 

  4. Matsura T, Miyai K, Trakulnaleamsai S, Yomo T, Shima Y, Miki S, Yamamoto K, Urabe I (1999) Evolutionary molecular engineering by random elongation mutagenesis. Nat Biotechnol 17:58–61

    Article  Google Scholar 

  5. Jeng FY, Lin SC (2006) Characterization and application of PEGylated horseradish peroxidase for the synthesis of poly(2-naphthol). Process Biochem 41(7):1566–1573

    Article  CAS  Google Scholar 

  6. Treetharnmathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R (2008) Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharm 357(1-2):252–259

    Article  CAS  PubMed  Google Scholar 

  7. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417

    Article  CAS  PubMed  Google Scholar 

  8. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry of peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Article  CAS  PubMed  Google Scholar 

  9. Gomez L, Ramırez HL, Villalonga ML, Hernandez J, Villalonga R (2006) Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzym Microb Technol 38:22–27

    Article  CAS  Google Scholar 

  10. Martinek K, Klyachko NL, Kabanov AV, Khmel'nitskii YL, Levashov AV (1989) Micellar enzymology: its relation to membranology. Biochim Biophys Acta 981(2):161–172

    Article  CAS  PubMed  Google Scholar 

  11. Martinek K, Klyachko NL, Levashov AV, Berezin IV (1983) Micellar enzymology. Catalytic activity of peroxidase in a colloidal aqueous solution in an organic solvent. Dokl Akad Nauk USSR 263(2):491–493

    Google Scholar 

  12. Celej MS, D’Andrea MG, Campana PT, Fidelio GD, Bianconi ML (2004) Superactivity and conformational changes on chymotrypsin upon interfacial binding to cationic micelles. Biochem J 378:1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9(2):217–226

    Article  CAS  PubMed  Google Scholar 

  14. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  PubMed  Google Scholar 

  15. Cooney MJ, Svoboda V, Lau C, Martin GP, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

    Article  CAS  Google Scholar 

  16. Kim MI, Kim J, Lee J, Jia H, Na HB, Youn JK, Kwak JH, Dohnalkova A, Grate JW, Wang P, Hyeon T, Park HG, Chang HM (2006) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol Bioeng 96(2):210–218

    Article  Google Scholar 

  17. Coche-Guerente L, Cosnier S, Labbe P (1997) Sol-gel derived composite materials for the construction of oxidase/peroxidase mediatorless biosensors. Chem Mater 9(6):1348–1352

    Article  CAS  Google Scholar 

  18. Lim J, Malati P, Bonet F, Dunn B (2007) Nanostructured sol-gel electrodes for biofuel cells. J Electrochem Soc 154(2):A140–A145

    Article  CAS  Google Scholar 

  19. Nguyen DT, Smit M, Dunn B, Zink JI (2002) Stabilization of creatine kinase encapsulated in silicate sol-gel materials and unusual temperature effects on its activity. Chem Mater 14:4300–4306

    Article  CAS  Google Scholar 

  20. Hussain F, Birch DJS, Pickup JC (2005) Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase. Anal Biochem 339:137–143

    Article  CAS  PubMed  Google Scholar 

  21. Yang R, Ruan Y, Deng J (1998) A H2O2 biosensor based on immobilization of horseradish peroxidase in electropolymerized methylene green film on GCE. J Appl Electrochem 28:1269–1275

    Article  CAS  Google Scholar 

  22. Chiang C-J, Hsiau L-T, Lee W-C (2004) Immobilization of cell-associated enzymes by entrapment in polymethacrylamide beads. Biotechnol Tech 11(2):121–125

    Article  Google Scholar 

  23. Moore CM, Akers NL, Hill AD, Johnson ZC, Minteer SD (2004) Improving the environment for immobilized dehydrogenase enzymes by modifying nafion with tetraalkylammonium bromides. Biomacromolecules 5(4):1241–1247

    Article  CAS  PubMed  Google Scholar 

  24. Bujara M et al (2010) Exploiting cell-free systems: implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376–389

    CAS  PubMed  Google Scholar 

  25. Aston WJ, Turner APF (1984) Biosensors and biofuel cells. Biotechnol Genet Eng Rev 1:89–120

    Article  CAS  Google Scholar 

  26. Atanassov P, Apblett C, Banta S, Brozik S, Calabrese-Barton S, Cooney MJ, Liaw BY, Mukerjee S, Minteer SD (2007) Enzymatic biofuel cells. Interface 16(2):28–31

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley D. Minteer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moehlenbrock, M.J., Minteer, S.D. (2017). Introduction to the Field of Enzyme Immobilization and Stabilization. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 1504. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6499-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6499-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6497-0

  • Online ISBN: 978-1-4939-6499-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics